Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Economic assessment of hydrogen lifecycle production on hydro power stations

https://doi.org/10.15518/isjaee.2023.11.114-132

Abstract

   Hydrogen has great potential as an alternative energy carrier. It is the most widespread element on Earth, but it cannot be obtained in pure form - hydrogen is in compounds with other chemical elements. Technological difficulties of obtaining and the initial stage of development of such technologies determine the high cost of hydrogen as an energy carrier at present. One of the ways to produce hydrogen on the existing production infrastructure is the option of hydrogen production by electrolysis at hydroelectric power plants. This article considers just such a method of hydrogen production and attempts to assess the economic feasibility of hydrogen production by this method with the existing technologies.

   The purpose of the article is to analyze the life cycle of hydrogen produced at hydroelectric power plants in terms of costs at each stage.

   The article analyzes each stage of the life cycle of hydrogen as an energy carrier produced at hydroelectric power plants and compares it with the production of other types of hydrogen. The conclusion states the current economic feasibility of this method of obtaining a renewable energy source and the prospects for the development of hydrogen energy in terms of the development, distribution and cheapening of technologies.

About the Authors

V. V. Korablev
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Vadim Vasilyevich Korablev, Doctor of Physical and Mathematical Sciences, Professor

195251; Polytechnicheskaya, 29, building B.;  St. Petersburg

Education: Leningrad Polytechnic Institute named after M.A. Kalinin (LPI) 1970; Research area: physical electronics, surface physics and diagnostics, microwave electronics, renewable energy, alternative energy; Publications: more than 250; h-index: 6; WoS Researcher ID: AEM-2800-2022



I. V. Ilin
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Igor Vasilievich Ilin, Director of the School, head of the laboratory

Graduate School of Business Engineering

laboratory CIRETEC-GT

195251; Polytechnicheskaya, 29, building B.;  St. Petersburg

Education: Leningrad State University named after. Zhdanova A.A. 1984; Research area: renewable energy, enterprise architecture, business engineering, IT project management, digital solutions implementation projects, healthcare management, digital technologies in logistics; Publications: more than 300; RSCI: 32; Scopus: 25; Researcher ID: J-6926-2013; Scopus ID: 57212553616



A. I. Levina
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Anastasia Ivanovna Levina, Professor, Senior Researcher

Graduate School of Business Engineering

laboratory CIRETEC-GT

195251; Polytechnicheskaya, 29, building B.;  St. Petersburg

Tel.: +7-921-3561462

Education: Peter the Great St. Petersburg Polytechnic University, 2005; Research area: process management, project management, enterprise architecture, business engineering, digital technologies in business; Publications: more than 150; RSCI: 27; Scopus: 19; Researcher ID: K-7449-2015; Scopus ID: 5721034522



A. A. Shemyakina
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Alexandra Alexandrovna Shemyakina, Master's student

Graduate School of Business Engineering

195251; Polytechnicheskaya, 29, building B.;  St. Petersburg

Tel.: +7-918-664-31-46

Education: St. Petersburg Humanitarian University of Trade Unions 2022; Research area: alternative energy, enterprise architecture, business process management; Publications: 3; WoS Researcher ID: KBD-3764-2024



References

1. IPCC - Intergovernmental Panel on Climate Change [Ehlektronnyi resurs] – Rezhim dostupa: https://archive.ipcc.ch/home_languages_main_russian.shtml (data obrashcheniya: 28. 09. 23).

2. Kiotskii protokol k Ramochnoi konventsii Organizatsii Ob"edinennykh Natsii ob izmenenii klimata – OON [Ehlektronnyi resurs] – Rezhim dostupa: https://www.un.org/ru/documents/decl_conv/conventions/kyoto.shtml (data obrashcheniya: 28. 09. 23).

3. Parizhskoe soglashenie – OON [Ehlektronnyi resurs] – Rezhim dostupa: https://www.un.org/ru/climatechange/paris-agreement (data obrashcheniya: 29. 09. 23).

4. S. Shiva Kumar, Hankwon Lim. An overview of water electrolysis technologies for green hydrogen production. Energy Reports 8 (2022).

5. Meng, X., Gu, A., Wu, X., Zhou, L., Zhou, J., Liu, B., Mao, Z.: Status quo of China hydrogen strategy in the field of transportation and international comparisons. International Journal of Hydrogen Energy. 46, 28887–28899 (2021). doi: 10.1016/j.ijhydene.2020.11.049.

6. Qian, F., Gao, W., Yu, D., Yang, Y., Ruan, Y.: An Analysis of the Potential of Hydrogen Energy Technology on Demand Side Based on a Carbon Tax: A Case Study in Japan. Energies. 16, 342 (2023). doi: 10.3390/en16010342.

7. Zhao, G., Nielsen, E.R., Troncoso, E., Hyde, K., Romeo, J.S., Diderich, M.: Life cycle cost analysis: A case study of hydrogen energy application on the Orkney Islands. International Journal of Hydrogen Energy. 44, 9517–9528 (2019). doi: 10.1016/j.ijhydene.2018.08.015.

8. Yang, H., Lin, X., Pan, H., Geng, S., Chen, Z., Liu, Y.: Energy saving analysis and thermal performance evaluation of a hydrogen-enriched natural gas-fired condensing boiler. International Journal of Hydrogen Energy. 48, 19279–19296 (2023). doi: 10.1016/j.ijhydene.2023.02.027.

9. Li, Y., Suryadi, B., Yan, J., Feng, J., Bhaskoro, A.G., Suwanto: A strategic roadmap for ASEAN to develop hydrogen energy: Economic prospects and carbon emission reduction. International Journal of Hydrogen Energy. 48, 11113–11130 (2023). doi: 10.1016/j.ijhydene.2022.12.105.

10. Luo, Z., Hu, Y., Xu, H., Gao, D., Li, W.: Cost-Economic Analysis of Hydrogen for China’s Fuel Cell Transportation Field. Energies. 13, 6522 (2020). doi: 10.3390/en13246522.

11. Hinkley, J.T., Heenan, A.R., Low, A.C.S., Watson, M.: Hydrogen as an export commodity – Capital expenditure and energy evaluation of hydrogen carriers. International Journal of Hydrogen Energy. 47, 35959–35975 (2022). doi: 10.1016/j.ijhydene.2022.08.192.

12. Qian, F.: Application Potential and Implication of Hydrogen Energy in Distributed Energy System. In: Gao, W. (ed.) Distributed Energy Resources: Solutions for a Low Carbon Society. pp. 245–268. Springer International Publishing, Cham (2023).

13. Sadik-Zada, E.R., Santibanez Gonzalez, E.D., Gatto, A., Althaus, T., Quliyev, F.: Pathways to the hydrogen mobility futures in German public transportation: A scenario analysis. Renewable Energy. 205, 384–392 (2023). doi: 10.1016/j.renene.2022.12.087.

14. Gacek, C.G., Gimbel, D.J., Longo, S.J., Mendel, B.I., Sampaio, G.N., Polmateer, T.L., Manasco, M.C., Hendrickson, D.C., Eddy, T.L., Lambert, J.H.: Managing Operational and Environmental Risks in the Strategic Plan of a Maritime Container Port. In: 2021 Systems and Information Engineering Design Symposium (SIEDS). pp. 1–6 (2021).

15. Niu, M., Li, X., Sun, C., Xiu, X., Wang, Y., Hu, M., Dong, H.: Operation Optimization of Wind/Battery Storage/Alkaline Electrolyzer System Considering Dynamic Hydrogen Production Efficiency. Energies. 16, 6132 (2023). doi: 10.3390/en16176132.

16. Asabin, V.V., Garanin, M.A., Kurmanova, L.S., Mishkin, A.A., Svechnikov, A.A.: Prospects for using hydrogen on railway transport. IOP Conf. Ser.: Mater. Sci. Eng. 953, 012074 (2020). doi: 10.1088/1757-899X/953/1/012074.

17. Dinçer, H., Çağlayan, Ç., Maratovna, M.L.: The Improvements in Hydrogen Energy Investments. In: Dinçer, H. and Yüksel, S. (eds.) Circular Economy and the Energy Market: Achieving Sustainable Economic Development Through Energy Policy. pp. 1–11. Springer International Publishing, Cham (2022).

18. Pan, W., Wan, T., Han, Y., Liu, S., Fu, J.: Storage and transportation technology solutions selection for large-scale hydrogen energy utilization scenarios under the trend of carbon neutralization. IOP Conf. Ser.: Earth Environ. Sci. 770, 012017 (2021). doi: 10.1088/1755-1315/770/1/012017.

19. Kumar Sarmah, M., Pratap Singh, T., Kalita, P., Dewan, A.: Sustainable hydrogen generation and storage – a review. RSC Advances. 13, 25253–25275 (2023). doi: 10.1039/D3RA04148D.

20. Chang, W.: China’s Energy Technology Innovation and Industrial Development Under the “Dual Carbon” Goals. In: Li, F. and Junkai, L. (eds.) China’s Opportunities for Development in an Era of Great Global Change. pp. 269–290. Springer Nature, Singapore (2023).

21. Vechkinzova, E., Steblyakova, L.P., Roslyakova, N., Omarova, B.: Prospects for the Development of Hydrogen Energy: Overview of Global Trends and the Russian Market State. Energies. 15, 8503 (2022). doi: 10.3390/en15228503.

22. Makaryan, I.A., Sedov, I.V.: The State and Development Prospects of the Global Hydrogen Energy Sector. Russ J Gen Chem. 91, 1912–1928 (2021). doi: 10.1134/S1070363221090371.

23. Allaev, K.R., Avezova, N.R.: Hydrogen—the Future of Power Engineering for the World and Uzbekistan. Appl. Sol. Energy. 57, 575–583 (2021). doi: 10.3103/S0003701X21060025.

24. Radoushinsky, D., Gogolinskiy, K., Dellal, Y., Sytko, I., Joshi, A.: Actual Quality Changes in Natural Resource and Gas Grid Use in Prospective Hydrogen Technology Roll-Out in the World and Russia. Sustainability. 15, 15059 (2023). doi: 10.3390/su152015059.

25. Shin, J.-E.: Hydrogen Technology Development and Policy Status by Value Chain in South Korea. Energies. 15, 8983 (2022). doi: 10.3390/en15238983.

26. Asif, U., Schmidt, K.: Fuel Cell Electric Vehicles (FCEV): Policy Advances to Enhance Commercial Success. Sustainability. 13, 5149 (2021). doi: 10.3390/su13095149.

27. Yunzhe, J., Bowei, Z., Feifei, W., Mengmeng, L.: Research on Hydrogen Energy and Fuel Cell Vehicle Roadmap in Various Countries. IOP Conf. Ser.: Earth Environ. Sci. 512, 012136 (2020). doi: 10.1088/1755-1315/512/1/012136.

28. Hjeij, D., Bicer, Y., Al-Sada, M. bin S., Koç, M.: Hydrogen export competitiveness index for a sustainable hydrogen economy. Energy Reports. 9, 5843–5856 (2023). doi: 10.1016/j.egyr.2023.05.024.

29. Vodorodnaya ehnergetika: klyuchevye napravleniya razvitiya, peresmotr planov, investitsii [Ehlektronnyi resurs] – Rezhim dostupa: https://сферанефтьигаз.рф/delprof-2023-d1 (data obrashcheniya: 29. 09. 23).

30. Vodorodnaya ehkonomika - put' k nizkouglerodnomu razvitiyu // Tsentr ehnergetiki Moskovskoi shkoly upravleniya SKOLKOVO. 2019. – 63 s.

31. David Jure Jovan, Gregor Dolanc , Bostjan Pregelj. Utilization of excess water accumulation for green hydrogen production in a run-of-river hydropower plant / Renewable Energy /. – 2022. P. 780-794.

32. David Jure Jovan, Gregor Dolanc , Bostjan Pregelj. Cogeneration of green hydrogen in a cascade hydropower plant / Energy Conversion and Management: X /. – 2021. – 12 p.

33. Biraj Singh Thapa, Bishwash Neupane, Hoseong Yang, Young-Ho Lee. Green hydrogen potentials from surplus hydro energy in Nepal / International Journal of Hydgrogen Energy /. - 2021. – p. 22256 – 22267.

34. Valerijs Kobzars, Laila Zemite, Aivo Jasevics, Janis Kleperis, Ilze Dimanta, Ainars Knoks, Peteris Lesnicenoks. Appropriateness of Hydrogen Production in LowPower Hydropower Plant / 2021 IEEE 62nd International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON) /. - 2021. – 6 p.

35. Electrolysers. IEA. [Ehlektronnyi resurs] – Rezhim dostupa: https://www.iea.org/energy-system/low-emission-fuels/electrolysers (data obrashcheniya: 01. 10. 23).

36. Green Hydrogen current and projected production costs – Structures Insider [Ehlektronnyi resurs] – Rezhim dostupa: https://www.structuresinsider.com/post/green-hydrogen-current-and-projected-production-costs (data obrashcheniya: 01. 10. 23).

37. Electrolyzer Cost, Performance, and Durability: Status and Prospects – ESIG [Ehlektronnyi resurs] – Rezhim dostupa: https://www.esig.energy/electrolyzer-cost-performance-and-durability-status-and-prospects/ (data obrashcheniya: 01. 10. 23).

38. Perspektivy Rossii na global'nom rynke vodorodnogo topliva – ehkspertno-analiticheskii doklad // Infrastrukturnyi tsentr EnergyNet. 2018. – 32 s.

39. Teledyne Energy Systems, Inc – info about company. Oil Monster. [Ehlektronnyi resurs] – Rezhim dostupa: https://www.oilmonster.com/company/teledyne-energy-systems-inc/70000 (data obrashcheniya: 03. 10. 23).

40. Shandong AUYAN New Energy Technology [Ehlektronnyi resurs] – Rezhim dostupa: https://www.auyangloble.com/ru/home (data obrashcheniya: 03. 10. 23).

41. «RosatoM» razrabotal ehlektrolizery dlya proizvodstva vodoroda. Strana Rosatom [Ehlektronnyi resurs] – Rezhim dostupa: https://strana-rosatom.ru/2022/02/17/rosatom-razrabotal-elektroliznyh/ (data obrashcheniya: 03. 10. 23).

42. Polikom – promyshlennye besshchelochnye ehlektrolizery [Ehlektronnyi resurs] – Rezhim dostupa: https://vodorod.pro/ (data obrashcheniya: 03. 10. 23).

43. PEM Water Electrolyzer Market. Precedence Research. [Ehlektronnyi resurs] – Rezhim dostupa: https://www.precedenceresearch.com/pem-water-electrolyzer-market (data obrashcheniya: 03. 10. 23).

44. Aaron Hodges, Anh Linh Hoang, George Tsekouras, Klaudia Wagner, Chong-Yong Lee, Gerhard F. Swiegers, Gordon G. Wallace. A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen // Nature Communications. 1304 (2022).

45. I. A. Makaryan, I.V. Sedov. Otsenka ehkonomicheskoi ehffektivnosti masshtabov polucheniya vodoroda razlichnymi metodami. Ros. khim. zh. (Zh. Ros. khim. ob-va im. D.I. Mendeleeva), 2021, t. LXV, № 1.

46. V.N. Fateev, O.K. Alekseeva, S.V. Korobtsev, E.A. Seregina, T.V. Fateeva, A.S. Grigor'ev, A.Sh. Aliev. Problemy akkumulirovaniya i khraneniya vodoroda // Chemical Problems. 2018. - № 4(16).

47. I.S. Chausov. Perspektivy vodorodnoi ehnergetiki s pozitsii Rossii. IC EnergyNet [Ehlektronnyi resurs] – Rezhim dostupa: file:///C:/Users/shemyakina_aa/Downloads/7_Enerdzhinet_Perspektivy_vodorodnoy_energetiki_Chausov_I_S.pdf (data obrashcheniya: 03. 10. 23).

48. Kak sobirat', khranit' i postavlyat' vodorod. Toshiba [Ehlektronnyi resurs] – Rezhim dostupa: https://habr.com/ru/companies/toshibarus/articles/566688/ (data obrashcheniya: 04. 10. 23).

49. Suiso Frontier. Wikipedia [Ehlektronnyi resurs] – Rezhim dostupa: https://ru.wikipedia.org/wiki/Suiso_Frontier (data obrashcheniya: 04. 10. 23).

50. Vodorodnaya likhoradka. Analiticheskii obzor // Natsional'noe reitingovoe agentstvo [Ehlektronnyi resurs] – Rezhim dostupa: https://www.ra-national.ru/analitika/vodorodnaja-lihoradka/ (data obrashcheniya: 6. 10. 23).

51. Sebastian Herwartz, Johannes Pagenkopf, Christoph Streuling. Sector coupling potential of wind-based hydrogen production and fuel cell train operation in regional rail transport in Berlin and Brandenburg. International Journal of Hydrogen energy. 46 (2021).

52. Janie Ling-Chin, Alessandro Giampieri, Megan Wilks, Shiew Wei Lau, Ellie Bacon, Imogen Sheppard, Andrew J. Smallbone, Anthony P. Roskilly. Technology roadmap for hydrogen-fuelled transportation in the UK. International Journal of Hydrogen energy. (2022).

53. Ugol' gryadushchikh vekov: kogda vodorod zamenit iskopaemye ehnergonositeli? Toshiba [Ehlektronnyi resurs] – Rezhim dostupa: https://habr.com/ru/companies/toshibarus/articles/535304/ (data obrashcheniya: 05. 10. 23).

54. David Jure Jovan, Gregor Dolanc, Bostjan Pregelj. Cogeneration of green hydrogen in a cascade hydropower plant // Energy Conversion and Management. № 10 (2021).

55. G. Kubilay Karayel, Nader Javani, Ibrahim Dincer. Hydropower for green hydrogen production in Turkey // International Journal of Hydrogen energy. № 48 (2023).

56. S. Fillipov, A. Golodnitskii, A. Kashin. Toplivnye ehlementy i vodorodnaya ehnergetika. Ehnergeticheskaya politika [Ehlektronnyi resurs] – Rezhim dostupa: https://energypolicy.ru/toplivnye-elementy-i-vodorodnaya-energetika/energoperehod/2020/12/17/ (data obrashcheniya: 05. 10. 23).


Review

For citations:


Korablev V.V., Ilin I.V., Levina A.I., Shemyakina A.A. Economic assessment of hydrogen lifecycle production on hydro power stations. Alternative Energy and Ecology (ISJAEE). 2023;(11):114-132. (In Russ.) https://doi.org/10.15518/isjaee.2023.11.114-132

Views: 186


ISSN 1608-8298 (Print)