

Методология проектирования интеллектуальных автономных распределенных гибридных энергетических комплексов с возобновляемыми источниками энергии
https://doi.org/10.15518/isjaee.2023.07.017-030
Аннотация
В статье предложена методология проектирования интеллектуальных систем автономных распределенных гибридных энергетических комплексов (АРГЭК), обеспечивающих минимальный уровень потребления энергии от внешней национальной сети, а также дизельных электростанций, обеспечивающих доставку электроэнергии региональным домохозяйствам и промышленным потребителям. Это будет реализовано за счет эффективного использования в таких системах ADHPC энергии, вырабатываемой из возобновляемых источников, с учетом их как штатного, так и аварийного режимов работы. При этом ADHPC не только поможет разгрузить существующую энергосистему во время пикового спроса, но и позволит значительно повысить эффективность процессов производства энергии из возобновляемых источников энергии (ВИЭ), включая «зеленый» водород: например, избыточная энергия аккумулируется в период ее избытка и подается обратно потребителям электроэнергии в период дефицита, потери электроэнергии сокращаются, поскольку применяется эффективное управление потоками мощности, циркулирующими в системах АДГЭУ. Методика включает в себя следующие этапы (подзадачи): разработка структуры распределенной гибридной системы генерации и транспортировки электроэнергии от источников к потребителям; разработка системы диагностики отказов энергоблоков и обрывов проводов на участках местных энерготранспортных сетей и управления по результатам диагностики потоков мощности, циркулирующих в системах АДГЭС как в штатном, так и в аварийном режимах. Таким образом обеспечивается баланс энергетических мощностей и минимизация их потерь.
Об авторах
М. АсановКыргызстан
Асанов Мурат Сатаркулович - к. т. н, доцент кафедры «Теоретическая и общая электротехника»
Ч. проспект Айтматова, 66, 720044, Бишкек
С. Асанова
Кыргызстан
Асанова Салима Муратовна - к. т. н, доцент, заведующий кафедрой «Теоретическая и общая электротехника»
Ч. проспект Айтматова, 66, 720044, Бишкек
М. Сафаралиев
Россия
Сафаралиев Муродбек Холназарович - к.т.н., старший научный сотрудник кафедры «Автоматизированных электрических систем»
ул. Мира, 19, 620002, г. Екатеринбург
И. Зицмане
Латвия
Зицман Инга - доктор технических наук, профессор Института энергетики RU, факультет электротехники и инженерии окружающей среды РТУ
Улица Азенес 12/1, Курземский район, Рига
С. Березкина
Россия
Березкина Светлана - доктор технических наук, доцент кафедры электротехники
ул. Мира, 19, 620002, г. Екатеринбург
С. Суеркулов
Кыргызстан
Суеркулов Семетей Манасович - теплоэлектроцентраль города Бишкек, электрический цех, старший дежурный электромонтер
Ч. проспект Айтматова, 66, 720044, Бишкек
Список литературы
1. . Fedak, W., Anweiler, S., Ulbrich, R., Jarosz, B., The Concept of Autonomous Power Supply System Fed with Renewable Energy Sources, J. Sustain. Dev. Energy Water Environ. Syst., 5(4), pp 579589, 2017, DOI: http://dx.doi.org/10.13044/j.sdewes.d5.0160.
2. . Ali Q. AlShetwi, Sustainable development of renewable energy integrated power sector: Trends, environmental impacts, and recent challenges, Science of The Total Environment, Volume 822, 2022,153645, ISSN 00489697, https://doi.org/10.1016/j.scitotenv.2022.153645.
3. . Resniova, E.; Ponomarenko, T. Sustainable Development of the Energy Sector in a Country Deficient in Mineral Resources: The Case of the Republic of Moldova. Sustainability 2021, 13, 3261. https://doi.org/10.3390/su13063261.
4. . World Energy Council. London. Available online: https://www.worldenergy.org/ (accessed on 30 March 2020).
5. . I. Zicmane, K. Berzina, T. Lomane and K. Kasperjuks, "Improving the Energy Efficiency of an Autonomous Power System with Renewable Sources," 2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC), 2018, pp. 16, doi: 10.1109/ICONIC.2018.8601288.
6. . Leva, S.; Grimaccia, F.; Rozzi, M.; Mascherpa, M. Hybrid Power System Optimization in MissionCritical Communication. Electronics 2020, 9, 1971. https://doi.org/10.3390/electronics9111971.
7. . Latinopoulos D., Kechagia K. A GISbased multicriteria evaluation for wind farm site selection. A regional scale application in Greece, Renewable Energy, Vol.78, pp. 550560, 2015.
8. . Lukutin B.V. Ways to reduce fuel consumption of diesel power plants / Lukutin B.V., Shandarova E.B. // Modern problems of science and education. 2013. No. 2. p. 139. In Russian.
9. . Obukhov S.G. Twocircuit energy storage for hybrid energy systems with renewable energy sources / Obukhov S.G., Plotnikov I.A., Ibrahim A., Maslov V.G. // Izvestiya Tomsk University. Georesource engineering. 2020. Vol. 331. No. 1. pp. 6476. In Russian.
10. . Lukutin B.V. Ways to reduce fuel consumption of diesel power plants / Lukutin B.V., Shandarova E.B. // Electricity. – 2012. No.6. pp. 2429. In Russian.
11. . Bakasova A.B., Asanov M.S., Satarkulov K. Extended options for the use of hydro wind electrical installation and automatic stabilization of its operation modes // Problems of automation and control. 2021. № 3 (42). Pp. 414. In Russian.
12. . Asanov M.S. Algorithm for calculation and selection of micro hydropower plant taking into account hydrological parameters of small watercourses mountain rivers of Central Asia / Asanov M.S., Safaraliev M., Zhabudaev T., Kokin S.E., Asanova S.M., Dmitriev S.A., Obozov A.J., Ghulomzoda A.H. // International Journal of Hydrogen Energy. – 2021. Volume 46, Issue 75. – P. 3710937119.
13. . Asanova S.M. Optimization of the structure of autonomous distributed hybrid power complexes and energy balance management in them / Asanova S.M., Kokin S.E., Dmitriev S.A., Safaraliev M., Arfan Kh., Zhabudaev T., Satarkulov Т.K. // International Journal of Hydrogen Energy. – 2021. Volume 46, Issue 70. – P. 3454234549.
14. . Tina G, Gagliano S, Raiti S. Hybrid solar/wind power system probabilistic modelling for longterm performance assessment. Solar energy. 2006 May 1; 80(5):57888.
15. . Nikita Tomin, Vladislav Shakirov, Aleksander Kozlov, Denis Sidorov, Victor Kurbatsky, Christian Rehtanz, Electo E.S. Lora, Design and optimal energy management of community microgrids with flexible renewable energy sources, Renewable Energy, Volume 183, 2022, Pages 903921, ISSN 09601481.
16. . Bin Zhang, Weihao Hu, Xiao Xu, Tao Li, Zhenyuan Zhang, Zhe Chen, Physicalmodelfree intelligent energy management for a gridconnected hybrid windmicroturbinePVEV energy system via deep reinforcement learning approach, Renewable Energy,Volume 200, 2022, Pages 433448, ISSN 09601481, https://doi.org/10.1016/j.renene.2022.09.125.
17. . Manusov, V.; Beryozkina, S.; Nazarov, M.; Safaraliev, M.; Zicmane, I.; Matrenin, P.; Ghulomzoda, A. Optimal Management of Energy Consumption in an Autonomous Power System Considering Alternative Energy Sources. Mathematics 2022, 10, 525. https://doi.org/10.3390/math10030525.
18. . Priyanka Paliwal, N.P. Patidar, R.K. Nema, Determination of reliability constrained optimal resource mix for an autonomous hybrid power system using Particle Swarm Optimization, Renewable Energy, Volume 63, 2014, Pages 194204, ISSN 09601481, https://doi.org/10.1016/j.renene.2013.09.003.
19. . Latinopoulos D., Kechagia K. A GISbased multicriteria evaluation for wind farm site selection. A regional scale application in Greece, Renewable Energy, Vol.78, pp. 550560, 2015.
20. . Leva, S.; Grimaccia, F.; Rozzi, M.; Mascherpa, M. Hybrid Power System Optimization in MissionCritical Communication. Electronics 2020, 9, 1971. https://doi.org/10.3390/electronics9111971 https://www.mdpi.com/20799292/9/11/1971#cite.
21. . G. Notton, V. Lazarov, Z. Zarkov and L. Stoyanov. Optimization of Hybrid Systems with Renewable Energy Sources: Trends for Research. 2006 First International Symposium on Environment Identities and Mediterranean Area, 2006, pp. 144149, doi: 10.1109/ISEIMA.2006.344942.
22. . Bourennani, Farid & Rahnamayan, Shahryar & Naterer, Greg. (2013). Optimal Design Methods for Hybrid Renewable Energy Systems. International Journal of Green Energy. 12. 10.1080/15435075.2014.888999.
23. . Asanova S.M. Method for designing dropofwire recognition systems on sections of undistorted twowire power transmission lines / Asanova S.M., Askarbek N., Suerkulov S.M., Ahyoev J.S., Asanova D.U., Safaraliev M.K. // IOP Conference Series: Materials Science and Engineering. 2020 15. Сер. "15th International Conference on Industrial Manufacturing and Metallurgy". Р. 012114.
24. . Asanov M. The use of Petri computing networks for optimization of the structure of distribution networks to minimize power losses. / Asanov M., Asanova S.M., Kokin S., Satarkulov K., Dmitriev S., Safaraliev M. // Energy Reports. 2020. Т. 6. № Suppl. 9. Р. 13371343.
25. . Asanova S.M. Mathematical modelling of mutual electromagnetic influences of related power transmission lines in a transition process MODE. / Asanova S.M., Suerkulov S.M., Safaraliev M.K., Asanova D.U., Milutin R.S. // IOP Conference Series: Materials Science and Engineering. 2020. 15. Сер. "15th International Conference on Industrial Manufacturing and Metallurgy". Р. 012113.
26. . Asanov M. Optimal amount of information determination for power system steady state estimation. / Asanov M., Semenenko S., Matrenin P., Asanova S.M., Safaraliev M., Rusina A. // Energy Reports. 2022. Т. 8. № Suppl. 1. Р. 10851092.
27. . Asanova S.M. Growth of Petri nets for the development of selforganizing multicomponent computational algorithms for solving problems in the electric power industry / Asanova S.M. // Problems of automation and control. 2021. № 3 (42). Pp. 414. In Russian.
28. . Ali Jani, Hamid Karimi, Shahram Jadid, Hybrid energy management for islanded networked microgrids considering battery energy storage and wasted energy, Journal of Energy Storage, Volume 40,2021,102700,ISSN 2352152X, https://doi.org/10.1016/j.est.2021.102700.
29. . Gupta, S.C. & Kumar, Yogendra & Agnihotri, Gayatri. (2011). Design of an autonomous renewable hybrid power system. International Journal of Renewable Energy Technology. 2. 10.1504/IJRET.2011.037983.
30. . M. Alsayed, M. Cacciato, G. Scarcella, G. Scelba, Design of hybrid power generation systems based on multi criteria decision analysis, Solar Energy, Volume 105, 2014, Pages 548560,ISSN 0038092X, https://doi.org/10.1016/j.solener.2014.03.011.
31. . Asanov M.S. Structural model of Petri computer networks / M.S. Asanov, S.M. Asanova, K.A. Satarkulov. // Izvestiya KSTU. – 2008. – No. 13. – pp. 7885. In Russian.
32. . Asanov M.S., Asanova S.M., Satarkulov K.A. Computational components, description language and rules of functioning of Petri computer networks / Asanov M.S., Asanova S.M., Satarkulov K.A. // Izvestiya KSTU. – 2008. – No. 13. – pp. 8595. In Russian.
33. . Asanova S.M. Growth of Petri nets for the development of selforganizing multicomponent computational algorithms for solving problems in the electric power industry / Asanova S.M. // Problems of automation and control. 2021. № 3 (42). Pp. 414. In Russian.
34. . Kotov V.E. Petri Nets. – M.: Nauka, The Main editorial office of physical and mathematical literature, 1984. 160 p. In Russian.
35. . Peterson J. Petri net theory and system modeling: Trans. from English – M.: Mir, 1984. 264 p. In Russian.
36. . https://www.isjaee.com/jour/announcement/view/260.
37. . https://www.isjaee.com/jour/announcement/view/257.
38. . A.L. Gusev, T.G. Jabbarov, Sh.G. Mamedov, Rauf Malikov, N.M. Hajibalaev, S.D. Abdullaeva, N.M. Abbasov. Production of hydrogen and carbon in the petrochemical industry by cracking of hydrocarbons in the process of heat utilization in steel production, International Journal of Hydrogen Energy,Volume 48, Issue 40, 2023, Pages 1495414963, ISSN 03603199, https://doi.org/10.1016/j.ijhydene.2022.12.341
39. (https://www.sciencedirect.com/science/article/pii/S0360319922062280).
40. . S.Z. Zhiznin, N.N. Shvets, V.M. Timokhov, A.L. Gusev. Economics of hydrogen energy of green transition in the world and Russia.Part I, International Journal of Hydrogen Energy,2023,ISSN 03603199, https://doi.org/10.1016/j.ijhydene.2023.03.069.
41. https://www.sciencedirect.com/science/article/pii/S0360319923010832).
42. . S.Z. Zhiznin, V.M. Timokhov, A.L. Gusev, Economic aspects of nuclear and hydrogen energy in the world and Russia, International Journal of Hydrogen Energy,Volume 45, Issue 56,2020,Pages 3135331366,ISSN 03603199, https://doi.org/10.1016/j.ijhydene.2020.08.260 (https://www.sciencedirect.com/science/article/pii/S036031992033319X).
43. . S.Z. Zhiznin, S. Vassilev, A.L. Gusev, Economics of secondary renewable energy sources with hydrogen generation, International Journal of Hydrogen Energy, Volume 44, Issue 23, 2019, Pages 1138511393, ISSN 03603199, https://doi.org/10.1016/j.ijhydene.2019.03.072.
44. (https://www.sciencedirect.com/science/article/pii/S0360319919310286).
45. . A.L. Gusev, Thermodynamic peculiarities of lowtemperature regeneration of cryosorption devices in heatinsulation cavities of hydrogenous cryogenic tanks, International Journal of Hydrogen Energy, Volume 26, Issue 8, 2001, Pages 863871, ISSN 03603199, https://doi.org/10.1016/S03603199(01)000246.
46. (https://www.sciencedirect.com/science/article/pii/S0360319901000246).
47. . R.A. Ufa, Y.Y. Malkova, A.L. Gusev, N.Y. Ruban, A.S. Vasilev, Algorithm for optimal pairing of res and hydrogen energy storage systems, International Journal of Hydrogen Energy, Volume 46, Issue 68, 2021, Pages 3365933669, ISSN 03603199, https://doi.org/10.1016/j.ijhydene.2021.07.094.
48. (https://www.sciencedirect.com/science/article/pii/S0360319921027567).
49. . R.A. Ufa, A.S. Vasilev, A.L. Gusev, A.V. Pankratov, Ya.Yu. Malkova, A.S. Gusev, Analysis of the influence of the currentvoltage characteristics of the voltage rectifiers on the static characteristics of hydrogen electrolyzer load, International Journal of Hydrogen Energy, Volume 46, Issue 68, 2021, Pages 3367033678, ISSN 03603199, https://doi.org/10.1016/j.ijhydene.2021.07.183.
50. (https://www.sciencedirect.com/science/article/pii/S0360319921029104).
Рецензия
Для цитирования:
Асанов М., Асанова С., Сафаралиев М., Зицмане И., Березкина С., Суеркулов С. Методология проектирования интеллектуальных автономных распределенных гибридных энергетических комплексов с возобновляемыми источниками энергии. Альтернативная энергетика и экология (ISJAEE). 2023;(7):17-30. https://doi.org/10.15518/isjaee.2023.07.017-030
For citation:
Asanov M., Asanova S., Safaraliev M., Zicmane I., Beryozkina S., Suerkulov S. Design methodology of intelligent autonomous distributed hybrid power complexes with renewable energy sources. Alternative Energy and Ecology (ISJAEE). 2023;(7):17-30. https://doi.org/10.15518/isjaee.2023.07.017-030