Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Modeling the energy supply of a biogas plant based on solar modules of various designs

https://doi.org/10.15518/isjaee.2023.07.031-051

Abstract

The article analyzes the world experience in the use of solar energy in anaerobic bioconversion systems, deter-mines the necessary heat and electricity supply for a biogas plant, as well as the composition and location of solar modules of various designs for its energy supply. Various arrangements of solar modules of photovoltaic, thermal and photovoltaic thermal constructions on the surfaces of a container for a biogas plant are considered. Various modes of energy generation for power supply of a biogas plant are proposed - to ensure the minimum power generation mode in parallel operation with the network and the power generation mode for a daily power consumption with batteries, as well as the minimum power generation mode in parallel operation with the network to control the power generation schedule.

About the Authors

V. A. Panchenko
Russian University of Transport
Russian Federation

Vladimir A. Panchenko - candidate of technical sciences, associate professor, senior researcher of the Laboratory

127994, Moscow, Obraztsova st., 9

+79262752104

ResearcherID: P-8127-2017

Scopus Author ID: 57201922860

Web of Science ResearcherID: AAE-1758-2019



Yu. V. Daus
Kuban state agrarian University
Russian Federation

Yulia V. Daus - candidate of technical sciences, senior researcher of Organization of agricultural production and management department

350044, Krasnodar, Kalinina str., 13

Scopus Autor ID: 57191261343

Web of Science ResearcherID: U-9605-2018



A. A. Kovalev
Federal Scientific Agroengineering Center VIM
Russian Federation

Andrey A. Kovalev - senior researcher of the laboratory of bioenergy technologies, doctor of technical sciences

109428, Moscow, 1st Institutskiy proezd, 5

Researcher ID: F-7045-2017

Scopus Author ID: 57205285134



Yu. V. Litty
Institute of Microbiology S.N. Vinogradsky, Federal Research Center «Fundamentals of Biotechnology» of the Russian Academy of Sciences
Russian Federation

Yuriy V. Litti - head of laboratory of Microbiology of Anthropogenic Habitats, candidate of biological sciences

119071, Moscow, Leninsky Prospekt, 33

Researcher ID: C-4945-2014

Scopus Author ID: 55251689800



I. V. Katraeva
Nizhny Novgorod State University of Architecture and Civil Engineering
Russian Federation

Inna V. Katraeva - candidate of technical sciences, Associate Professor of the department of water supply, sanitation, engineering ecology and chemistry

603000, Nizhny Novgorod, Ilinskaya st., 65

Scopus Author ID: 57191839730



References

1. . Kovalev A.A., Kovalev D.A., Panchenko V., Kharchenko V. (2021). Intellectualized Control System for Anaerobic Bioconversion of Liquid Organic Waste. International Journal of Energy Optimization and Engineering, Volume 10, Issue 1, 56-81, DOI: 10.4018/IJEOE.2021010104.

2. . Andrey A. Kovalev, Dmitriy A. Kovalev, Victor S. Grigoriev, Vladimir Panchenko (2022). Heat Recovery of Low-Grade Energy Sources in the System of Preparation of Biogas Plant Substrates. International Journal of Energy Optimization and Engineering. Volume 11 Issue 1, 1-17, DOI: 10.4018/IJEOE.298693.

3. . Vladimir Panchenko, Andrey Izmailov, Valeriy Kharchenko, Yakov Lobachevskiy (2020). Photovoltaic Solar Modules of Different Types and Designs for Energy Supply. International Journal of Energy Optimization and Engineering, V. 9, I. 2, 74-94. DOI: 10.4018/IJEOE.2020040106.

4. . Vergil C. Weatherford, Zhiqiang (John) Zhai (2015). Affordable solar-assisted biogas digesters for cold climates: Experiment, model, verification and analysis. Applied Energy, V. 146, 209-216. https://doi.org/10.1016/j.apenergy.2015.01.111.

5. . Nathan Curry, Pragasen Pillay (2015). Integrating solar energy into an urban small-scale anaerobic digester for improved performance. Renewable Energy, V. 83, 280-293. https://doi.org/10.1016/j.renene.2015.03.073.

6. . Md. M. Rahman, Mohammad Mahmodul Hasan, Jukka V. Paatero, Risto Lahdelma (2014). Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries. Renewable Energy, 68, 35-45. https://doi.org/10.1016/j.renene.2014.01.030.

7. . Md. Yeamin Ali, Mehadi Hassan, Md. Atiqur Rahman, Abdulla-AI Kafy, Iffat Ara, Akib Javed, Md. Redwanur Rahman (2019). Life cycle energy and cost analysis of small scale biogas plant and solar PV system in rural areas of Bangladesh. Energy Procedia, V. 160, 277-284. https://doi.org/10.1016/j.egypro.2019.02.147.

8. . Md. Mizanur Rahman, Mohammad Mahmodul Hasan, Jukka V. Paatero, Risto Lahdelma (2014). Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries. Renewable Energy, V. 68, 35-45. https://doi.org/10.1016/j.renene.2014.01.030.

9. . Muhammad Tamoor, M. Suleman Tahir, Muhammad Sagir, Muhammad Bilal Tahir, Shahid Iqbal, Tasmia Nawaz (2020). Design of 3 kW integrated power generation system from solar and biogas. International Journal of Hydrogen Energy, V. 45, I. 23, 12711-12720. https://doi.org/10.1016/j.ijhydene.2020.02.207.

10. . Wiesław Gazda, Wojciech Stanek (2016). Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system. Applied Energy, V. 169, 138-149. https://doi.org/10.1016/j.apenergy.2016.02.037.

11. . P. Axaopoulos, P. Panagakis, A. Tsavdaris, D. Georgakakis (2001). Simulation and experimental performance of a solar-heated anaerobic digester. Solar Energy, V. 70, I. 2, 2001, 155-164. https://doi.org/10.1016/S0038-092X(00)00130-4.

12. . Hamed M. El-Mashad, Wilko K.P. van Loon, Grietje Zeeman, Gerard P.A. Bot, Gatze Lettinga (2004). Design of A Solar Thermophilic Anaerobic Reactor for Small Farms. Biosystems Engineering, V. 87, I. 3, 345-353. https://doi.org/10.1016/j.biosystemseng.2003.11.013.

13. . Badr Ouhammou, Aggour Mohammed, Smouh Sliman, Abdelmajid Jamil, Bakraoui Mohammed, Fadoua Karouach, Hassan El Bari, Tarik Kousksou (2022). Experimental conception and thermo-energetic analysis of a solar biogas production system. Case Studies in Thermal Engineering, V. 30, 101740. https://doi.org/10.1016/j.csite.2021.101740.

14. . M.R. Darwesh, M.S.Ghoname (2021). Experimental studies on the contribution of solar energy as a source for heating biogas digestion units. Energy Reports, V. 7, 1657-1671. https://doi.org/10.1016/j.egyr.2021.03.014.

15. . B. Ouhammou, M. Naciri, M. Aggour, M. Bakraoui, F. Karouach, H. El Bari (2017). Design and Analysis of Integrating the Solar Thermal energy in Anaerobic Digester using TRNSYS: Application kenitra- Morocco. Energy Procedia, V. 141, 13-17. https://doi.org/10.1016/j.egypro.2017.11.004.

16. . Rong Feng, Jinping Li, Ti Dong, Xiuzhen Li (2016). Performance of a novel household solar heating thermostatic biogas system. Applied Thermal Engineering, V. 96, 519-526. https://doi.org/10.1016/j.applthermaleng.2015.12.003.

17. . Yong Lu, Ye Tian, Haowei Lu, Lei Wu, Xianlin Li (2015). Study of solar heated biogas fermentation system with a phase change thermal storage device. Applied Thermal Engineering, V. 88, 418-424. https://doi.org/10.1016/j.applthermaleng.2014.12.065.

18. . Jinping Li, Shirong Jin, Dandan Wan, Hui Li, Shuyuan Gong, Vojislav Novakovic (2022). Feasibility of annual dry anaerobic digestion temperature-controlled by solar energy in cold and arid areas. Journal of Environmental Management, V. 318, 115626. https://doi.org/10.1016/j.jenvman.2022.115626.

19. . Yuan Zhong, Mauricio Bustamante Roman, Yingkui Zhong, Steve Archer, Rui Chen, Lauren Deitz, Dave Hochhalter, Katie Balaze, Miranda Sperry, Eric Werner, Dana Kirk, Wei Liao (2015). Using anaerobic digestion of organic wastes to biochemically store solar thermal energy. Energy, V. 83, 638-646. https://doi.org/10.1016/j.energy.2015.02.070.

20. . Eid S. Gaballah, Tarek Kh Abdelkader, Shuai Luo, Qiaoxia Yuan, Abd El-Fatah Abomohra (2020). Enhancement of biogas production by integrated solar heating system: A pilot study using tubular digester. Energy, V. 193, 116758. https://doi.org/10.1016/j.energy.2019.116758.

21. . A. Amo-Aidoo, O. Hensel, J.K. Korese, F. Abunde Neba, B. Sturm (2021). A framework for optimization of energy efficiency and integration of hybridized-solar energy in agro-industrial plants: Bioethanol production from cassava in Ghana. Energy Reports, V. 7, 1501-1519. https://doi.org/10.1016/j.egyr.2021.03.008.

22. . Vikram P. Rathod, Jotiprasad Shete, Purnanand V. Bhale (2016). Experimental investigation on biogas reforming to hydrogen rich syngas production using solar energy. International Journal of Hydrogen Energy, V. 41, I. 1, 132-138. https://doi.org/10.1016/j.ijhydene.2015.09.158.

23. . Bosheng Su, Wei Han, Hongguang Jin (2017). Proposal and assessment of a novel integrated CCHP system with biogas steam reforming using solar energy. Applied Energy, V. 206, 1-11. https://doi.org/10.1016/j.apenergy.2017.08.028.

24. . Bosheng Su, Wei Han, Xiaosong Zhang, Yi Chen, Zefeng Wang, Hongguang Jin (2018) Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy. Applied Energy, V. 229, 922-935. https://doi.org/10.1016/j.apenergy.2018.08.037.

25. . A.S. Mehr, M. Gandiglio, M. Mosaye Nezhad, A. Lanzini, S.M.S. Mahmoudi, M. Yari, M. Santarelli (2017). Solar-assisted integrated biogas solid oxide fuel cell (SOFC) installation in wastewater treatment plant: Energy and economic analysis. Applied Energy, V. 191, 620-638. https://doi.org/10.1016/j.apenergy.2017.01.070.

26. . G. Zhang, Y.Li, Y.J. Dai, R.Z. Wang (2016). Design and analysis of a biogas production system utilizing residual energy for a hybrid CSP and biogas power plant. Applied Thermal Engineering, V. 109, Part A, 423-431. https://doi.org/10.1016/j.applthermaleng.2016.08.092.

27. . Poulek V., Strebkov D.S., Persic I.S., Libra M. (2012). Towards 50 years lifetime of PV panels laminated with silicone gel technology. Solar Energy, V. 86, I. 10, 3103-3108. https://doi.org/10.1016/j.solener.2012.07.013.

28. . Minli Yu, Ke Wang, Harrie Vredenburg (2021). Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. International Journal of Hydrogen Energy, 46(41). https://doi.org/10.1016/j.ijhydene.2021.04.016.

29. . Hermesmann M., Müller T.E. (2022). Green, Turquoise, Blue, or Grey? Environmentally friendly Hydrogen Production in Transforming Energy Systems. Progress in Energy and Combustion Science, 90, 100996. https://doi.org/10.1016/j.pecs.2022.100996.

30. . Flora Biggins, Mohit Kataria, Diarmid Roberts, Dr Solomon Brown. Green hydrogen investments: Investigating the option to wait. Energy, 241, 122842. https://doi.org/10.1016/j.energy.2021.122842.

31. . Ying Zhou, Ruiying Li, Zexuan Lv, Jian Liu, Hongjun Zhou, Chunming Xu (2022). Green hydrogen: A promising way to the carbon-free society. Chinese Journal of Chemical Engineering, 43, 2-13. https://doi.org/10.1016/j.cjche.2022.02.001.

32. . Paolo Giuseppe Mura, Roberto Baccoli, Roberto Innamorati, Stefano Mariotti (2015). Solar Energy System in A Small Town Constituted of A Network of Photovoltaic Collectors to Produce Electricity for Homes and Hydrogen for Transport Services of Municipality. Energy Procedia, 78, 824-829. https://doi.org/10.1016/j.egypro.2015.11.002.

33. . Piyali Chatterjee, Mounika Sai KrishnaAmbati, Amit K. Chakraborty, Sabyasachi Chakrabortty, Sajal Biring, Seeram Ramakrishna, Terence Kin Shun Wong, Avishek Kumar, Raghavendra Lawaniya, Goutam Kumar Dalapati (2022). Photovoltaic/photo-electrocatalysis integration for green hydrogen: A review. Energy Conversion and Management, 261, 115648. https://doi.org/10.1016/j.enconman.2022.115648.

34. . International Renewable Energy Agency (IRENA) (2020). Green Hydrogen: A guide to policy making, International Renewable Energy Agency, Abu Dhabi, 52. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Nov/IRENA_Green_hydrogen_policy_2020.pdf.

35. . Friedman, S. J., Fan, Z., Tang, K. (2019). “Low-Carbon Heat Solutions for Heavy Industry: Sources, Options, and Costs Today.” New York: Columbia University, Center on Global Energy Policy. https://www.energypolicy.columbia.edu/sites/default/files/file-uploads/LowCarbonHeat-CGEP_Report_100219-2_0.pdf.

36. . Wood Mackenzie Power & Renewables (2019). “Green Hydrogen Production: Landscape, Projects and Costs.” https://www.woodmac.com/our-expertise/focus/transition/green-hydrogen-production-2019/.

37. . Chun-Yu Lai, Linjie Zhou, Zhiguo Yuan, Jianhua Guo (2021). Hydrogen-driven microbial biogas upgrading: Advances, challenges and solutions. Water Research, V. 197, 117120. https://doi.org/10.1016/j.watres.2021.117120.

38. . Irini Angelidaki, Laura Treu, Panagiotis Tsapekos, Gang Luo, Stefano Campanaro, Henrik Wenzel, Panagiotis G. Kougias (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, V. 36, I. 2, 452-466. https://doi.org/10.1016/j.biotechadv.2018.01.011.

39. . Diego Curto, Mariano Martín (2019). Renewable based biogas upgrading. Journal of Cleaner Production, V. 224, 50-59. https://doi.org/10.1016/j.jclepro.2019.03.176.

40. . Shanfei Fu, Irini Angelidaki, Yifeng Zhang (2021). In situ Biogas Upgrading by CO2-to-CH4 Bioconversion. Trends in Biotechnology, V. 39, I. 4, 336-347. https://doi.org/10.1016/j.tibtech.2020.08.006.

41. . Kovalev A.A., Kovalev D.A., Zhuravleva E.A., Katraeva I.V, Panchenko, V., Fiore U., Litti Y.V. (2022). Two-Stage Anaerobic Digestion with Direct Electric Stimulation of Methanogenesis: The Effect of a Physical Barrier to Retain Biomass on the Surface of a Carbon Cloth-Based Biocathode. Renewable Energy, 181, 966-977. https://doi.org/https://doi.org/10.1016/j.renene.2021.09.097.

42. . Photovoltaic geographical information system. Internet-sait. Rezhim dostupa: https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#PVP ot 10 noyabrya 2022 g.

43. . Svidetel'stvo o gosudarstvennoi registratsii programmy dlya EHVM № 2016615186 Rossiiskaya Federatsiya. Poisk optimal'nogo ugla naklona priemnoi ploshchadki otnositel'no gorizonta v zadannoi tochke Yuzhnogo federal'nogo okruga: № 2016612303: zayavl. 18.03.2016: opubl. 17.05.2016 / YU.V. Daus, V.V. Kharchenko, I.V. Yudaev.

44. . Svidetel'stvo o gosudarstvennoi registratsii programmy dlya EHVM № 2017615528 Rossiiskaya Federatsiya. Opredelenie geometricheskikh parametrov razmeshcheniya i komponovki fotoehlektricheskikh panelei na solnechnoi ehlektrostantsii: № 2017610943: zayavl. 06.02.2017: opubl. 25.05.2017 / YU.V. Daus, V.V. Kharchenko, I.V. Yudaev.


Review

For citations:


Panchenko V.A., Daus Yu.V., Kovalev A.A., Litty Yu.V., Katraeva I.V. Modeling the energy supply of a biogas plant based on solar modules of various designs. Alternative Energy and Ecology (ISJAEE). 2023;(7):31-51. (In Russ.) https://doi.org/10.15518/isjaee.2023.07.031-051

Views: 121


ISSN 1608-8298 (Print)