Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Biomass burning in a fluidized bed with the possibility of obtaining hydrogen with partial CO2 removal

https://doi.org/10.15518/isjaee.2023.07.082-094

Abstract

An analysis of CO2 capture and storage technologies resulting from processes in which biomass is converted to energy or used to produce materials (BECCS) was made. It is shown that they will be widely used after 2030. The issues of biomass combustion in a circulating fluidized bed (CFB) are considered, including combustion in an oxygen environment with CO2 recirculation, which can provide carbon neutrality. The issues of obtaining hydrogen by various methods are considered, their comparison in terms of cost and carbon footprint is given. It is noted that the production of "green" hydrogen by electrolysis from wind and solar energy is hardly justified in the conditions of Russia. Therefore, it is of interest to study the possibility of using electricity from the steam cycle when burning biomass as a renewable energy source. Calculations were made according to our own methods and the results of calculations of a plant with hydrogen production using a CFB boiler with a steam output of 100 t/h are presented. Two variants of biomass are considered - chips and pellets. The boiler was designed for air combustion, oxygen combustion with CO2 recirculation and variants with the addition of oxygen from the electrolyser at 50% and 100% of the generated electricity supply. The parameters of the boiler and the consumption of hydrogen and oxygen in these options are determined. A Levelized Life Cycle Cost of Hydrogen (LCOH) evaluation has been performed, showing that the proposed carbon neutral plant provides a levelized cost value at the lower end of existing plants with renewable electrolysis. Calculations have shown that when switching to full oxygen combustion with a payment for emissions of 30 USD/t CO2 LCOH, there will be about 2 USD/kg of hydrogen. Such a BECCS project will be quite promising. It is shown that the indirect carbon footprint for the proposed plant is 0.38 - 0.95 kg/kg and certainly meets the requirements for low-carbon hydrogen (carbon footprint less than 4.4 kg/kg).

About the Authors

G. A. Ryabov
JSC VTI
Russian Federation

Ryabov Georgy Aleksandrovich - Member of the International Committee on Circulating Fluidized Bed Technology, Member of the International Committee on Fluidized Bed Fuel Conversion, Member of the Fluidized Bed Committee at the International Energy Agency, expert of the International Energy Agency, Member of the Technical Committee on Clean Coal Technologies and CO2 sequestration

Moscow, Avtozavodskay `14

+7 495 1377770, ext. 2641



O. M. Folomeev
JSC VTI
Russian Federation

Folomeev Oleg Mikhailovich - Head of Boilers and Furnaces Department

Moscow, Avtozavodskay `14

+7 495 1377770, ext. 2641



References

1. . Energy Technology Perspectives 2020. Special Report on Carbon Capture Utilisation and Storage. CCUS in clean energy transitions. Paris: International Energy Agency. https://webstore.iea.org/ccus-in-clean-energy-transitions.

2. . IEA Bioenergy (2013), Using a life cycle assessment approach to estimate the net greenhouse gas emissions of bioenergy, https://www.ieabioenergy.com/wpcontent/uploads/2013/10/Usinga-LCA-approach-to-estimate-the-net-GHG-emissionsof-bioenergy.pdf, accessed 23 May 2019.

3. . IEA (2020), ETP Clean Energy Technology Guide, https://www.iea.org/articles/etp-cleanenergy-technology-guide, accessed 7 September 2020.

4. . EASAC (2018), Negative emission technologies: What role in meeting Paris Agreement targets? EASAC Policy Report, https://easac.eu/fileadmin/PDF_s/reports_statements/Negative_Carbon/EASAC_Report_on_Negative_Emission_Technologies.pdf (accessed 6 May 2019).

5. . Fuss, S. et al. (2018), Negative emissions - Part 2: Costs, potentials and side effects, Environmental Research Letters, Vol. 13/6, p. 63002, IOP Publishing, https://doi.org/10.1088/1748-9326/aabf9f.

6. . Haszeldine, R. S. et al. (2018), Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments (Volume 376, p. 20160447), https://doi.org/10.1098/rsta.2016.0447.

7. . Keith, D. W. A process for capturing CO2 from the atmosphere / Keith, D. W. et al. // Cell Press. – 2018, Joule. – Vol. 2/8, pp. 1573–1594, https://doi.org/10.1016/J.JOULE.2018.05.006.

8. . Realmonte, G. et al. (2019), An inter-model assessment of the role of direct air capture in deep mitigation pathways, Nature Communications, Vol. 10/1, p. 3277, https://doi.org/10.1038/s41467-019-10842-5.

9. . Zabetta, E. Role and Challenges of CFB in a Changing Energy Market [Text] / E. Zabetta, J. Kovacs, T. Eriksson // Proc. of the 12th Int. Conf. on CFB (May 23–26, 2017). – Krakow, Poland. – P. 77–83.

10. . Kettunen, A. CFB flexible operation to enable the transition to renewable energy sources with maximum profitability [Text] / A. Kettunen, V. Barišić, E. C. Zabetta, J. Kovács // Proc of 23-rd Int. Conf. on FBC, May 13-17, 2018. – Korea, Seoul, 2018. – pp. 183 – 192.

11. . Liu, Q. Cofiring of coal and biomass in oxyfuel fluidized bed for CO2 capture: A review of recent advances / Q. Liu, Y. Shi, W. Zhong, A. Yu // Chinese Journal of Chemical Engineering. – 2019. – 27, 2261–2272 (Aug 2019).

12. . Рябов, Г. А. Совместное сжигание биомассы и ископаемых топлив – путь к декарбонизации производства тепла и электроэнергии / Г.А. Рябов //Теплоэнергетика. – 2022. – № 6, DOI: 10.1134/S0040363622060054.

13. . Рябов, Г. А. Обоснование расчета топочного контура котлов с циркулирующим кипящим слоем [Текст] / Г. А. Рябов, О. М. Фоломеев // Теплоэнергетика. – 2011. – № 6. – С. 12 – 18.

14. . Аксютин, О. Метан, водород, углерод: новые рынки, новые возможности [Текст] / О. Аксютин, А. Ишков, К. Романов, Р. Тетеревлев, // «НЕФТЕГАЗОВАЯ ВЕРТИКАЛЬ» – 2021. –№1-2. – С. 40–47.

15. . Дауди, Д. Перспективы «голубого» водорода в России /Д. Дауди, Г. Рожнятовский, А. Ишмурзин, Н. Кодряну, Н. Попадько // Общественно-деловой научный журнал Водород: вопросы, проблемы и возможности зарождающегося рынка. 2021. – № 3 (157). – С. 34-43.

16. . Pratschner, S. Power‐to‐Green Methanol via CO2 Hydrogenation — A Concept Study Including Oxyfuel Fluidized Bed Combustion of Biomass /S. Pratschner, P. Skopec, J. Hrdlicka and F. Winter // 1Energies, 2021, 14, 4638. https://doi.org/10.3390/en14154638.

17. . Электронный ресурс: Режим доступа – https://www.bioenergy-news.com/news/drax-considers-new-pellet-projects/

18. . Elsayed, M. A. Carbon and energy balances for a range of biofuel options /M. A. Elsayed, R. Matthews and N. D. Mortimer // Project #B/B6/00784/REP URN03/86, Shaffield Hallam Universitru UK, Marth 2003.

19. . Carbon emission of different fuels, Forest Research, 2021. https://www.resarchgate.net.


Review

For citations:


Ryabov G.A., Folomeev O.M. Biomass burning in a fluidized bed with the possibility of obtaining hydrogen with partial CO2 removal. Alternative Energy and Ecology (ISJAEE). 2023;(7):82-94. (In Russ.) https://doi.org/10.15518/isjaee.2023.07.082-094

Views: 105


ISSN 1608-8298 (Print)