Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Cинтез системы автоматического регулирования для инвертора напряжения в составе автономной системы электроснабжения

https://doi.org/10.15518/isjaee.2024.01.036-050

Аннотация

В данной работе рассматривается задача синтеза двухконтурной системы управления для трехфазного инвертора напряжения, предназначенного для использования в автономной системе электроснабжения. Подобный DC/AC преобразователь является неотъемлемым звеном в системах электроснабжения с возобновляемыми источниками энергии в качестве первичных, и, соответственно, должен удовлетворять требованиям на качество генерируемой электроэнергии. Данные требования обеспечиваются за счет схемотехнических решений, а также с помощью построения высокоточных систем автоматического управления. В работе предложен метод расчета параметров ПИ-регуляторов с резонансными составляющими, основанный на использовании метода разделения движений и позволяющий осуществить независимую настройку компонент регуляторов. При этом введение резонансной составляющей обеспечивает высокую точность слежения для заданной основной гармоники сетевого напряжения и селективное подавление внешних гармонических воздействий. Предложенный подход позволяет синтезировать САР, значительно улучшающую качество выходных параметров инвертора напряжения.

Об авторах

О. А. Вавилов
Новосибирский государственный технический университет
Россия

Вавилов Олег Андреевич - аспирант кафедры «Автоматики» факультета «Автоматики
и вычислительной техники», 

Новосибирск



В. Д. Юркевич
Новосибирский государственный технический университет
Россия

Юркевич Валерий Дмитриевич - профессор кафедры «Автоматики»,

Новосибирск



Д. В. Коробков
Новосибирский государственный технический университет
Россия

Коробков Дмитрий Владиславович - старший преподаватель кафедры «Электроники и Электротехники», ведущий конструктор проектов силовой электроники автономных систем электроснабжения,

Новосибирск



Список литературы

1. E. L. Gonz´alez, F. I. Llerena, M. S. P´erez, F. R. Iglesias, and J. G. Macho. «Energy evaluation of a solar hydrogen storage facility: Comparison with other electrical energy storage technologies». International Journal of Hydrogen Energy, vol. 40, no. 15, pp. 5518- 5525, 2015.

2. B. Hamad, A. Al-Durra, T. H. M. EL-Fouly, and H. H. Zeineldin. «Economically optimal and stability preserving hybrid droop control for autonomous microgrids». IEEE Transactions on Power Systems, vol. 38, no. 1, pp. 934-947, 2023.

3. . Fang, K.; Heijungs, R.; De Snoo, G.R. (2014). «Theoretical exploration for the combination of the ecological, energy, carbon, and water footprints: Overview of a footprint family». Ecological Indicators. 36: 508-518, doi:10.1016/j.ecolind.2013.08.017.

4. . M. Pourakbari-Kasmaei, M. Lehtonen, J. Contreras and J. R. S. Mantovani. «Carbon Footprint Management: A Pathway Toward Smart Emission Abatement» in IEEE Transactions on Industrial Informatics. – Vol. 16, no. 2, pp. 935-948, Feb. 2020, doi: 10.1109/TII.2019.2922394. https://ieeexplore.ieee.org/document/8735936

5. Muhammad Bakr Abdelghany, Ahmed Al-Durra, «A coordinated optimal operation of a grid-connected wind-solar microgrid incorporating hybrid energy storage management systems». IEEE Transactions on Sustainable Energy, January 2023. – Vol. 99, pp. 1-13. DOI:10.1109/TSTE.2023.3263540.

6. Ahmed S. Alahmed and Lang Tong, «Co-optimizing Behind-The-Meter Resources under Net Metering». IEEE Texas Power and Energy Conference, TPEC 2023. – Memorial Student Center at Texas A&M University, College Station, Texas, USA, Feb 13 – Feb 14, 2023. – Р. 42-48. DOI: 10.1109/TPEC56611.2023.10078677.

7. T. S. Biya; M. R. Sindhu, «Design and Power Management of Solar Powered Electric Vehicle Charging Station with Energy Storage System». 3rd International conference on Electronics, Communication and Aerospace Technology, ICECA 2019. – Coimbatore, India, 12-14 June 2019. – Р. 815-820. DOI: 10.1109/ICECA.2019.8821896.

8. Hoang Tien Nguyen; Dae-Hyun Choi, «Distributionally Robust Model Predictive Control for Smart Electric Vehicle Charging Station with V2G/V2V Capability». IEEE Transactions on Smart Grid, 31 March 2023. – Р. 1-13. DOI: 10.1109/TSG.2023.3263470.

9. L. Valverde, F. Rosa, C. Bordons, and J. Guerra, «Energy management strategies in hydrogen smartgrids: A laboratory experience». International Journal of Hydrogen Energy, vol. 41, no. 31, pp. 13715-13725, 2016.

10. M. F. Shehzad, M. B. Abdelghany, D. Liuzza, and L. Glielmo. «Modeling of a hydrogen storage wind plant for model predictive control management strategies». in 2019 18th European Control Conference (ECC), June 2019, pp. 1896-1901.

11. M. Mureddu, G. Caldarelli, A. Chessa, A. Scala, A. Damiano, «Green Power Grids: How Energy from Renewable Sources Affects Networks and Markets» in PLoS ONE 10(9): e0135312, Sept. 3, 2015, 15 p. URL: https://doi.org/10.1371/journal.pone.0135312

12. Vyacheslav Zyryanov, Natalya Kiryanova, Igor Korotkov, Gleb Nesterenko, Gleb Prankevich, Ilia Rudiuk. «Analysis of Energy Storage Systems Application in the Russian and World Electric Power Industry». PROCEEDINGS OF THE 2020 URAL SMART ENERGY CONFERENCE, USEC 2020. – Ekaterinburg, November 13-15, 2020. – Р. 106-109. DOI: 10.1109/USEC50097.2020.9281175.

13. Nhat Le, Alexis Plasencia Leos, Juan Henriquez, Anh Phuong Ngo, Hieu T. Nguyen, «Analyze the Effects of COVID-19 on Energy Storage Systems: A TechnoEconomic Approach». IEEE Texas Power and Energy Conference, TPEC 2023. – Memorial Student Center at Texas A&M University, College Station, Texas, USA, Feb 13 – Feb 14, 2023. – Р. 322-328. DOI:10.1109/TPEC56611.2023.10078507.

14. Shi Xuewei, Shi Xuefang, Dong Wenqi, Zang Peng, Jia Hongyan, Wu Jinfang, Wang Yang, «Research on Energy Storage Configuration Method Based on Wind and Solar Volatility». 10th International Conference on Power and Energy Systems, ICPES 2020, Chengdu, China, 25-27 December 2020. – Р. 464-468. DOI: 10.1109/ICPES51309.2020.9349645.

15. M. Yang, L. Zhang, Z. Zhao, and L. Wang, «Comprehensive benefits analysis of electric vehicle charging station integrated photovoltaic and energy storage». J. Clean. Prod., vol. 302, no. 126967, pp. 1-12, Jun. 2021.

16. . D. Zhai, L. Yao, S. Liao, J. Xu, B. Mao and B. Xie. «A Coordinated Control Strategy of Wind Power / Hydrogen Integrated System». 2022 7th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 2022, pp. 838-843, doi: 10.1109/ICPRE55555.2022.9960576. https://ieeexplore.ieee.org/document/9960576

17. . Hamza Bouzeria; Issam Abadlia;Mohamed Adjabi «Echo state network based power control and energy management in grid-connected a hybrid windhydrogen power generation system». 2018 International Conference on Wind Energy and Applications in Algeria (ICWEAA), 6-7 November 2018, doi: 10.1109/ICWEAA.2018.8605092

18. C. Liu, K. Chau, D. Wu, and S. Gao, «Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies». Proc. IEEE, vol. 101, no. 11, pp. 2409-2427, Nov. 2013.

19. Q. Yan, B. Zhang, and M. Kezunovic, «Optimized operational cost reduction for an EV charging station integrated with battery energy storage and PV generation». IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 2096-2106, Mar. 2018.

20. M. Bazrafshan and N. Gatsis. «Decentralized stochastic optimal power flow in radial networks with distributed generation». IEEE Trans. Smart Grid, vol. 8, no. 2, pp. 787-801, Mar. 2016.

21. Zhaodi Shi, Weisheng Wang, Yuehui Huang, Pai Li; Ling Dong, «Simultaneous optimization of renewable energy and energy storage capacity with the hierarchical control». CSEE Journal of Power and Energy Systems, Volume: 8, Issue: 1, January 2022. – Р. 95-104. DOI: 10.17775/CSEEJPES.2019.01470.

22. C. Bordons, F. Garcia-Torres, and M. A. Ridao, Model Predictive Control of Microgrids. Springer, 2020.

23. C. Mu, W. Liu, and W. Xu. «Hierarchically adaptive frequency control for an EV-integrated smart grid with renewable energy». IEEE Trans. Ind. Informat., vol. 14, no. 9, pp. 4254-4263, Sep. 2018.

24. J. Li, M. E. Khodayar, J. Wang, and B. Zhou, «Data-driven distributionally robust co-optimization of P2P energy trading and network operation for interconnected microgrids». IEEE Trans. Smart Grid, vol. 12, no. 6, pp. 5172-5184, Nov. 2021.

25. K. Garifi, K. Baker, D. Christensen, and B. Touri. «Convex relaxation of grid-connected energy storage system models with complementarity constraints in DC OPF». IEEE Trans. Smart Grid, vol. 11, no. 5, pp. 4070-4079, Sep. 2020.

26. J. Zhai, Y. Jiang, Y. Shi, C. N. Jones, and X. - P. Zhang. «Distributionally robust joint chance-constrained dispatch for integrated transmission distribution systems via distributed optimization». IEEE Trans. Smart Grid, vol. 13, no. 3, pp. 2132-2147, May 2022.

27. H. Farzin, M. Fotuhi-Firuzabad, and M. MoeiniAghtaie, «A practical scheme to involve degradation cost of lithium-ion batteries in vehicle-to-grid applications». IEEE Trans. Sustain. Energy, vol. 7, no. 4, pp. 1730-1738, Oct. 2016.

28. Oluwatimilehin Adeosun, Valentina Cecchi, «Optimal Coordination of Directional Overcurrent Relays using Numerical Iterative Method». IEEE Texas Power and Energy Conference, TPEC 2023. – Memorial Student Center at Texas A&M University, College Station, Texas, USA, Feb 13 – Feb 14, 2023. – Р. 13-18. DOI: 10.1109/TPEC56611.2023.10078545.

29. H. T. Nguyen and D.-H. Choi. «Decentralized distributionally robust coordination between distribution system and charging station operators in unbalanced distribution systems». IEEE Trans. Smart Grid, pp. 2164-2177, to be published, doi: 10.1109/TSG.2022.3210232, 2022.

30. . M. Mehrasa, H. Salehfar, D. F. Selvaraj and S. I. Ahmed. «Smart bidirectional charging for frequency support of a low-inertia vehicle-to-grid system in presence of energy storage systems». 2023 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 2023, pp. 1-6, doi: 10.1109/TPEC56611.2023.10078605. https://ieeexplore.ieee.org/document/10078605

31. . Wang T., O’Neill D., Kamath H. Dynamic Control and Optimization of Distributed Energy Resources in a Microgrid // IEEE Trans. on Smart Grid. – 2015. 6, – No 6. – Р. 2884-2894. DOI: 10.1109/TSG.2015.2430286.

32. . Коробков Д. В. Методика и результаты анализа качества выходной энергии автономных систем электроснабжения переменного напряжения с модульными статическими преобразователями в установившемся режиме // Methodology and results of analysis of output energy quality of autonomous AC power supply systems with modular static converters in steadystate mode / Д. В. Коробков. – DOI 10.17588/2072-2672.2023.1.011-024. – Текст: непосредственный // Вестник Ивановского государственного энергетического университета. – 2023. – № 1. – С. 11-24.

33. . Dai M., Marwali M. N., Jung J. -W., Keyhani A. A Three-Phase Four-Wire Inverter Control Technique for a Single Distributed Generation Unit in Island Mode // IEEE Trans. on Power Electronics. – 2008. 23. – No 1. – P. 322-331. DOI: 10.1109/TPEL.2007.911816

34. . M. Parvez, M. F. M. Elias, N. A. Rahim, F. Blaabjerg, D. Abbott and S. F. Al-Sarawi. «Comparative Study of Discrete PI and PR Controls for Single-Phase UPS Inverter» in IEEE Access, vol. 8, pp. 45584-45595, 2020, doi: 10.1109/ACCESS.2020.2964603.

35. . M. R. Miveh, M. F. Rahmat, M. W. Mustafa, A. A. Ghadimi, and A. Rezvani. «An Improved Control Strategy for a Four-Leg Grid-Forming Power Converter under Unbalanced Load Conditions». Adv. Power Electron., vol. 2016, pp. 1-14, 2016.

36. Nos O. V., Shtein D. A., Leus G. S. et al. The simplified control technique for PMSM torque ripple reduction // Proc. of the 21st Int. Conf. of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). Chemal, Russia, 29 June-03 July 2020. pp. 475-481.

37. Sevostyanov N. A., Gorbunov R. L. Resonant controllers design for frequency-selective impedance controlled DC microgrids // IEEE 22 International conference of young professionals in electron devices and materials (EDM) : proc., Altai Region, 30 June – 4 July 2021. – Novosibirsk: IEEE, 2021. – P. 348-353. DOI: 10.1109/EDM52169.2021.9507639.

38. Pereira L. F. A., Bazanella A. S. Tuning rules for proportional resonant controllers // IEEE Trans. Control Systems Technol. – 2015. 23, N 5. – P. 2010-2017.

39. . A. G. Garganeev, R. Aboelsaud and A. Ibrahim. «Voltage Control of Autonomous Three-Phase FourLeg VSI Based on Scalar PR Controllers». 2019 20th International Conference of Young Specialists on Micro/ Nanotechnologies and Electron Devices (EDM), 2019, pp. 558-564, doi: 10.1109/EDM.2019.8823098.

40. . Nos O. V., Makys P., Kharitonov S. A. Modified resonant controllers with time delay compensation // 18 International Scientic Technical Conference Alternating Current Electric Drives (ACED2021): proc., Ekaterinburg, 2427 May 2021. – 2021. – pp. 1-5. DOI: 10.1109/ACED50605.2021.9462290.

41. . Meerov M. V. (1967) Structural Synthesis of High-Accuracy Automatic Control Systems. 2nd ed., add. and reworked, Nauka, Moscow, 423 p. (in Russian)

42. . Yurkevich V. D. Calculation and tuning of controllers for nonlinear systems with different-rate processes // Optoelectronics, Instrumentation and Data Processing. September 2012, Volume 48, Issue 5, pp 447-453. DOI: 10.3103/s8756699012050032 (http://link.springer.com/article/10.3103%2FS8756699012050032)

43. Francis B. A., Wonham W. M. The internal model principle of control theory // Automation. 1979, Vol. 12, no. 5, pp. 457-465

44. Costa-Castello R., Olm J. M., Vargas H., Ramos G. A. An Educational Approach to the Internal Model Principle for Periodic Signals // International Journal of Innovative Computing, Information and Control. – 2012. – V. 8. – № 8.

45. Mandel Y., Weiss G. Adaptive Internal Model Based Suppression of Torque Ripple in Brushless DC Motor Drives // Systems Science & Control Engineering. – 2015. – V. 3, no. 1, pp. 162-176.

46. . ГОСТ 32132.3-2013. Совместимость технических средств электромагнитная. Низковольтные источники питания постоянного тока. Требования и методы испытаний. – Введ. 2014-01-01. – М.: Стандартинформ, 2014. – 40 с.

47. . Vavilov O. A., Korobkov D. V., Yurkevich V. D. Two-Level Voltage Inverter: Parametric Synthesis of Filter and Controllers // 2022 IEEE 23rd International Conference of Young Professionals in Electron Devices and Materials (EDM), Altai, Russian Federation, pp. 372-377, June 2022.


Рецензия

Для цитирования:


Вавилов О.А., Юркевич В.Д., Коробков Д.В. Cинтез системы автоматического регулирования для инвертора напряжения в составе автономной системы электроснабжения. Альтернативная энергетика и экология (ISJAEE). 2024;(1):36-50. https://doi.org/10.15518/isjaee.2024.01.036-050

For citation:


Vavilov O.A., Yurkevich V.D., Korobkov D.V. Synthesis of an automatic control system for a voltage inverter for autonomous power supply system. Alternative Energy and Ecology (ISJAEE). 2024;(1):36-50. (In Russ.) https://doi.org/10.15518/isjaee.2024.01.036-050

Просмотров: 183


ISSN 1608-8298 (Print)