Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Моделирование и изготовление солнечных модулей различной конструкции для энергоснабжения биогазовой установки

https://doi.org/10.15518/isjaee.2024.02.012-036

Аннотация

В статье представлено описание моделирования и изготовления солнечных модулей фотоэлектрической, тепловой и теплофотоэлектрической конструкций, предназначенных для энергоснабжения биогазовой установки, предназначенной для производства биоводорода и биометана. Проведено математическое моделирование фотоэлектрического модуля и определена расчётная температура фотопреобразователей, а также изготовлен фотоэлектрический модуль с помощью процесса герметизации фотоэлектрических преобразователей двухкомпонентным полисилоксановым компаундом. Также проведено математическое моделирование солнечного теплового коллектора с водяными радиаторами в виде круглой медной трубки, овальной медной трубки, а также прямоугольного канала водяного охлаждения («водяная рубашка»), в котором оценены потери давления и величина нагрева воды. Определены расстояния между прямоугольными каналами радиатора водяного охлаждения для равномерного теплосъёма, а также проведено математическое моделирование теплового состояния солнечного теплового коллектора с полукруглым сечением канала радиатора водяного охлаждения, после чего был изготовлен солнечный тепловой коллектор. Проведено математическое моделирование суммарных перемещений компонентов теплофотоэлектрического модуля, значения которых не выходят за допустимые пределы, после чего был изготовлен теплофотоэлектрический модуль с помощью процесса герметизации фотоэлектрических преобразователей двухкомпонентным полисилоксановым компаундом.

Об авторах

В. А. Панченко
Российский университет транспорта
Россия

Панченко Владимир Анатольевич, кандидат технических наук, доцент, доцент кафедры Российского университета транспорта, старший научный сотрудник лаборатории Федерального научного агроинженерного центра ВИМ

127994, Москва, ул. Образцова, д. 9

Researcher ID: P-8127-2017
Scopus Author ID: 57201922860
Web of Science Researcher ID: AAE-1758-2019



С. П. Чирский
Московский Государственный Технический Университет имени Н. Э. Баумана
Россия

Чирский Сергей Павлович, кандидат технических наук, доцент кафедры МГТУ им. Н. Э. Баумана

105005, Москва, ул. 2-я Бауманская, 5

Scopus Author ID: 57216159258
Web of Science Researcher ID: S-5898-2017



А. А. Ковалёв
Федеральный научный агроинженерный центр ВИМ
Россия

Ковалев Андрей Александрович, главный научный сотрудник лаборатории биоэнергетических технологий, доктор технических наук

Researcher ID: F-7045-2017

Scopus Author ID: 57205285134

109428, Москва,1-й Институтский проезд, 5



Ю. В. Литти
Институт микробиологии им. С. Н. Виноградского, Федеральный исследовательский центр «Фундаментальные основы биотехнологии» Российской академии наук
Россия

Литти Юрий Владимирович, заведующий лабораторией микробиологии антропогенных мест обитания, кандидат биологических наук

119071, Москва, Ленинский пр-т, 33

Researcher ID: C-4945-2014

Scopus Author ID: 55251689800



Ю. В. Караева
Институт энергетики и перспективных технологий ФИЦ КазНЦ РАН
Россия

Караева Юлия Викторовна, ведущий научный сотрудник лаборатории энергетических систем и технологий, кандидат технических наук

Scopus Author ID: 56856782800

Web of Science Researcher ID: F-6917-2017

420111, г. Казань, ул. Лобачевского, д. 2/31



И. В. Катраева
Нижегородский государственный архитектурно-строительный университет
Россия

Катраева Инна Валентиновна, кандидат технических наук, доцент кафедры водоснабжения, водоотведения, инженерной экологии и химии Нижегородского государственного архитектурно-строительного университета, научный сотрудник лаборатории ресурсосберегающих биотехнологий НИИ химии

603000, г. Нижний Новгород, ул. Ильинская, д. 65

Scopus Author ID: 57191839730



Список литературы

1. . Michael Child, Otto Koskinen, Lassi Linnanen, Christian Breyer (2018). Sustainability guardrails for energy scenarios of the global energy transition. Renewable and Sustainable Energy Reviews, 91, 321-334. https://doi.org/10.1016/j.rser.2018.03.079.

2. . Lowe, R. J., Drummond, P. (2022). Solar, wind and logistic substitution in global energy supply to 2050 – Barriers and implications. Renewable and Sustainable Energy Reviews, 153, 111720. https://doi.org/10.1016/j.rser.2021.111628.

3. . Maestre V. M., Ortiz, A., Ortiz I. (2021). Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications. Renewable and Sustainable Energy Reviews, 152, 111628. https://doi.org/10.1016/j.rser.2021.111628.

4. . Meiling Yue, Hugo Lambert, Elodie Pahon, Robin Roche, Samir Jemei, Daniel Hissel (2021). Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews, 146, 111180. https://doi.org/10.1016/j.rser.2021.111180.

5. . Arsad, A. Z., Hannan M. A., Al-Shetwi, Ali Q., Mansur, M., Muttaqi, K. M., Dong, Z. Y., Blaabjerg, F. (2022). Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions. International Journal of Hydrogen Energy, 47(39), 17285-17312. https://doi.org/10.1016/j.ijhydene.2022.03.208.

6. . Torbjørn Egeland-Eriksen, Amin Hajizadeh, SabrinaSartori (2021). Hydrogen-based systems for integration of renewable energy in power systems: Achievements and perspectives. International Journal of Hydrogen Energy, 46(63), 31963-31983. https://doi.org/10.1016/j.ijhydene.2021.06.218.

7. . Zhijie Chen, Wei Wei, Lan Song, Bing-Jie Ni (2022). Hybrid Water Electrolysis: A New Sustainable Avenue for Energy-Saving Hydrogen Production. Sustainable Horizons, 1, 100002. https://doi.org/10.1016/j.horiz.2021.100002.

8. . Fei-Yue Gao, Peng-Cheng Yu, Min-Rui Gao (2022). Seawater electrolysis technologies for green hydrogen production: challenges and opportunities. Current Opinion in Chemical Engineering, 36, 100827. https://doi.org/10.1016/j.coche.2022.100827.

9. . Elnaz Asghari, Muhammad Imran Abdullah, Faranak Foroughi, Jacob J. Lamb, Bruno G. Pollet (2022). Advances, opportunities, and challenges of hydrogen and oxygen production from seawater electrolysis: An electrocatalysis perspective. Current Opinion in Electrochemistry, 31, 100879. https://doi.org/10.1016/ j.coelec.2021.100879.

10. . Ernesto Amores, Margarita Sánchez-Molina, MónicaSánchez (2021). Effects of the marine atmosphere on the components of an alkaline water electrolysis cell for hydrogen production. Results in Engineering, 10, 100235. https://doi.org/10.1016/j.rineng.2021.100235.

11. . Shams Anwar, Faisal Khan, Yahui Zhang, Abdoulaye Djire (2021). Recent development in electrocatalysts for hydrogen production through water electrolysis. International Journal of Hydrogen Energy, 46(63), 32284-32317. https://doi.org/10.1016/ j.ijhydene.2021.06.191.

12. . Flora Biggins, Mohit Kataria, Diarmid Roberts, Dr Solomon Brown. Green hydrogen investments: Investigating the option to wait. Energy, 241, 122842. https://doi.org/10.1016/j.energy.2021.122842.

13. . Ying Zhou, Ruiying Li, Zexuan Lv, Jian Liu, Hongjun Zhou, Chunming Xu (2022). Green hydrogen: A promising way to the carbon-free society. Chinese Journal of Chemical Engineering, 43, 2-13. https://doi.org/10.1016/j.cjche.2022.02.001.

14. . Paolo Giuseppe Mura, Roberto Baccoli, Roberto Innamorati, Stefano Mariotti (2015). Solar Energy System in A Small Town Constituted of A Network of Photovoltaic Collectors to Produce Electricity for Homes and Hydrogen for Transport Services of Municipality. Energy Procedia, 78, 824-829. https://doi.org/10.1016/j.egypro.2015.11.002.

15. . Piyali Chatterjee, Mounika Sai KrishnaAmbati, Amit K. Chakraborty, Sabyasachi Chakrabortty, Sajal Biring, Seeram Ramakrishna, Terence Kin Shun Wong, Avishek Kumar, Raghavendra Lawaniya, Goutam Kumar Dalapati (2022). Photovoltaic/photo-electrocatalysis integration for green hydrogen: A review. Energy Conversion and Management, 261, 115648. https://doi.org/10.1016/j.enconman.2022.115648.

16. . International Renewable Energy Agency (IRENA) (2020). Green Hydrogen: A guide to policy making, International Renewable Energy Agency, Abu Dhabi, 52. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Nov/IRENA_Green_hydrogen_policy_2020.pdf

17. . Friedman, S. J., Fan, Z., Tang, K. (2019). «Low-Carbon Heat Solutions for Heavy Industry: Sources, Options, and Costs Today». New York: Columbia University, Center on Global Energy Policy. https://www.energypolicy.columbia.edu/sites/default/files/file-uploads/LowCarbonHeat-CGEP_Report_100219-2_0.pdf.

18. . Wood Mackenzie Power & Renewables (2019). «Green Hydrogen Production: Landscape, Projects and Costs». https://www.woodmac.com/our-expertise/focus/ transition/green-hydrogen-production-2019/.

19. . Lijun Wang, Chen Hong, Xiangyang Li, Zhenzhong Yang, Shuman Guo, Quancai Li (2022). Review on blended hydrogen-fuel internal combustion engines: A case study for China. Energy Reports, 8, 6480-6498. https://doi.org/10.1016/j.egyr.2022.04.079.

20. . Rafig Babayev, Hong G. Im, Arne Andersson, Bengt Johansson (2022). Hydrogen double compressionexpansion engine (H2DCEE): A sustainable internal combustion engine with 60%+ brake thermal efficiency potential at 45 bar BMEP. Energy Conversion and Management, 264, 115698. https://doi.org/10.1016/j.enconman.2022.115698.

21. . Norhidayah Mat Taib, Mohd Radzi Abu Mansor, Wan Mohd Faizal Wan Mahmood (2021). Combustion characteristics of hydrogen in a noble gas compression ignition engine. Energy Reports, 7, 200-218. https://doi.org/10.1016/j.egyr.2021.07.133.

22. . Balu Jalindar, Shinde, Karunamurthy K. (2022). Recent progress in hydrogen fuelled internal combustion engine (H2ICE) – A comprehensive outlook. Materials today: Proceedings, 51(3), 1568-1579. https://doi.org/10.1016/j.matpr.2021.10.378.

23. . Changeun Park, Sesil Lim, Jungwoo Shin, Chul-Yong Lee (2022). How much hydrogen should be supplied in the transportation market? Focusing on hydrogen fuel cell vehicle demand in South Korea: Hydrogen demand and fuel cell vehicles in South Korea. Technological Forecasting and Social Change, 181, 121750. https://doi.org/10.1016/j.techfore.2022.121750.

24. . Leonard E. Klebanoff, Sean A. M. Caughlan, Robert T. Madsen, Cody J. Conard, Timothy S. Leach, T. Bruce Appelgate Jr. (2021). Comparative study of a hybrid research vessel utilizing batteries or hydrogen fuel cells. International Journal of Hydrogen Energy, 46(76), 38051-38072. https://doi.org/10.1016/ j.ijhydene.2021.09.047.

25. . Sebastian Nicolay, Stanislav Karpuk, Yaolong Liu, Ali Elhama (2021). Conceptual design and optimization of a general aviation aircraft with fuel cells and hydrogen. International Journal of Hydrogen Energy, 46(64), 32676-32694. https://doi.org/10.1016/ j.ijhydene.2021.07.127.

26. . Seyed Ehsan Hosseini (2022). Hydrogen and Fuel Cells in Transport Road, Rail, Air, and Sea. Comprehensive Renewable Energy (Second Edition), 4, 317-342. https://doi.org/10.1016/B978-0-12-819727-1.00005-4.

27. . Minnan Ye, Phil Sharp, Nigel Brandon, Anthony Kucernak (2022). System-level comparison of ammonia, compressed and liquid hydrogen as fuels for polymer electrolyte fuel cell powered shipping. International Journal of Hydrogen Energy, 47(13), 8565- 8584. https://doi.org/10.1016/j.ijhydene.2021.12.164.

28. . Lei Zheng, Shikun Cheng, Yanzhao Han, Min Wang, Yue Xiang, Jiali Guo, Di Cai, Heinz-Peter Mang, Taili Dong, Zifu Li, Zhengxu Yan, Yu Men (2020). Bio-natural gas industry in China: Current status and development. Renewable and Sustainable Energy Reviews, 128, 109925. https://doi.org/10.1016/j.rser.2020.109925.

29. . Hailin Tian, Xiaonan Wang, Ee Yang Lim, Jonathan T. E. Lee, Alvin W. L. Ee, Jingxin Zhang, Yen Wah Tong (2021). Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization. Renewable and Sustainable Energy Reviews, 150, 111489. https://doi.org/10.1016/j.rser.2021.111489.

30. . Kovalev A. A., Kovalev D. A., Panchenko V., Kharchenko V. (2021). Intellectualized Control System for Anaerobic Bioconversion of Liquid Organic Waste. International Journal of Energy Optimization and Engineering, Volume 10, Issue 1, 56-81, DOI: 10.4018/IJEOE.2021010104.

31. . Andrey A. Kovalev, Dmitriy A. Kovalev, Victor S. Grigoriev, Vladimir Panchenko (2022). Heat Recovery of Low-Grade Energy Sources in the System of Preparation of Biogas Plant Substrates. International Journal of Energy Optimization and Engineering. Volume 11 Issue 1, 1-17, DOI: 10.4018/IJEOE.298693.

32. . Md. M. Rahman, Mohammad Mahmodul Hasan, Jukka V. Paatero, Risto Lahdelma (2014). Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries. Renewable Energy, 68, 35-45. https://doi.org/10.1016/j.renene.2014.01.030.

33. . Md. Yeamin Ali, Mehadi Hassan, Md. Atiqur Rahman, Abdulla-AI Kafy, Iffat Ara, Akib Javed, Md. Redwanur Rahman (2019). Life cycle energy and cost analysis of small scale biogas plant and solar PV system in rural areas of Bangladesh. Energy Procedia, V. 160, 277-284. https://doi.org/10.1016/j.egypro.2019.02.147.

34. . Md. Mizanur Rahman, Mohammad Mahmodul Hasan, Jukka V. Paatero, Risto Lahdelma (2014). Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries. Renewable Energy, V. 68, 35-45. https://doi.org/10.1016/j.renene.2014.01.030.

35. . Muhammad Tamoor, M. Suleman Tahir, Muhammad Sagir, Muhammad Bilal Tahir, Shahid Iqbal, Tasmia Nawaz (2020). Design of 3 kW integrated power generation system from solar and biogas. International Journal of Hydrogen Energy, V. 45, I. 23, 12711-12720. https://doi.org/10.1016/j.ijhydene.2020.02.207.

36. . Wiesław Gazda, Wojciech Stanek (2016). Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system. Applied Energy, V. 169, 138-149. https://doi.org/10.1016/j.apenergy.2016.02.037. [37]. P. Axaopoulos, P. Panagakis, A. Tsavdaris, D. Georgakakis (2001). Simulation and experimental performance of a solar-heated anaerobic digester. Solar Energy, V. 70, I. 2, 2001, 155-164. https://doi.org/10.1016/S0038-092X(00)00130-4.

37. . Hamed M. El-Mashad, Wilko K. P. van Loon, Grietje Zeeman, Gerard P. A. Bot, Gatze Lettinga (2004). Design of A Solar Thermophilic Anaerobic Reactor for Small Farms. Biosystems Engineering, V. 87, I. 3, 345-353.https://doi.org/10.1016/j.biosystemseng.2003.11.013.

38. . Badr Ouhammou, Aggour Mohammed, Smouh Sliman, Abdelmajid Jamil, Bakraoui Mohammed, Fadoua Karouach, Hassan El Bari, Tarik Kousksou (2022). Experimental conception and thermo-energetic analysis of a solar biogas production system. Case Studies in Thermal Engineering, V. 30, 101740. https://doi.org/10.1016/j.csite.2021.101740.

39. . M. R. Darwesh, M. S. Ghoname (2021). Experimental studies on the contribution of solar energy as a source for heating biogas digestion units. Energy Reports, V. 7, 1657-1671. https://doi.org/10.1016/j.egyr.2021.03.014. [41]. B. Ouhammou, M. Naciri, M. Aggour, M. Bakraoui, F. Karouach, H. El Bari (2017). Design and Analysis of Integrating the Solar Thermal energy in Anaerobic Digester using TRNSYS: Application kenitra-Morocco. Energy Procedia, V. 141, 13-17. https://doi.org/10.1016/j.egypro.2017.11.004.

40. . Rong Feng, Jinping Li, Ti Dong, Xiuzhen Li (2016). Performance of a novel household solar heating thermostatic biogas system. Applied Thermal Engineering, V. 96, 519-526. https://doi.org/10.1016/j.applthermaleng.2015.12.003.

41. . Yong Lu, Ye Tian, Haowei Lu, Lei Wu, Xianlin Li (2015). Study of solar heated biogas fermentation system with a phase change thermal storage device. Applied Thermal Engineering, V. 88, 418-424. https://doi.org/10.1016/j.applthermaleng.2014.12.065.

42. . Jinping Li, Shirong Jin, Dandan Wan, Hui Li, Shuyuan Gong, Vojislav Novakovic (2022). Feasibility of annual dry anaerobic digestion temperature-controlled by solar energy in cold and arid areas. Journal of Environmental Management, V. 318, 115626. https://doi.org/10.1016/j.jenvman.2022.115626.

43. . Yuan Zhong, Mauricio Bustamante Roman, Yingkui Zhong, Steve Archer, Rui Chen, Lauren Deitz, Dave Hochhalter, Katie Balaze, Miranda Sperry, Eric Werner, Dana Kirk, Wei Liao (2015). Using anaerobic digestion of organic wastes to biochemically store solar thermal energy. Energy, V. 83, 638-646. https://doi.org/10.1016/j.energy.2015.02.070.

44. . Eid S. Gaballah, Tarek Kh Abdelkader, Shuai Luo, Qiaoxia Yuan, Abd El-Fatah Abomohra (2020). Enhancement of biogas production by integrated solar heating system: A pilot study using tubular digester. Energy, V. 193, 116758. https://doi.org/10.1016/j.energy.2019.116758.

45. . Vikram P. Rathod, Jotiprasad Shete, Purnanand V. Bhale (2016). Experimental investigation on biogas reforming to hydrogen rich syngas production using solar energy. International Journal of Hydrogen Energy, V. 41, I. 1, 132-138. https://doi.org/10.1016/j.ijhydene.2015.09.158.

46. . Bosheng Su, Wei Han, Hongguang Jin (2017). Proposal and assessment of a novel integrated CCHP system with biogas steam reforming using solar energy. Applied Energy, V. 206, 1-11. https://doi.org/10.1016/j.apenergy.2017.08.028.

47. . Bosheng Su, Wei Han, Xiaosong Zhang, Yi Chen, Zefeng Wang, Hongguang Jin (2018) Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy. Applied Energy, V. 229, 922-935. https://doi.org/10.1016/j.apenergy.2018.08.037.

48. . A. S. Mehr, M. Gandiglio, M. Mosaye Nezhad, A. Lanzini, S.M.S. Mahmoudi, M. Yari, M. Santarelli (2017). Solar-assisted integrated biogas solid oxide fuel cell (SOFC) installation in wastewater treatment plant: Energy and economic analysis. Applied Energy, V. 191, 620-638. https://doi.org/10.1016/j.apenergy.2017.01.070.

49. . G. Zhang, Y. Li, Y. J. Dai, R. Z. Wang (2016). Design and analysis of a biogas production system utilizing residual energy for a hybrid CSP and biogas power plant. Applied Thermal Engineering, V. 109, Part A, 423-431. https://doi.org/10.1016/j.applthermaleng.2016.08.092.

50. . Minli Yu, Ke Wang, Harrie Vredenburg (2021). Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. International Journal of Hydrogen Energy, 46(41). https://doi.org/10.1016/j.ijhydene.2021.04.016.

51. . Hermesmann M., Müller T. E. (2022). Green, Turquoise, Blue, or Grey? Environmentally friendly Hydrogen Production in Transforming Energy Systems. Progress in Energy and Combustion Science, 90, 100996. https://doi.org/10.1016/j.pecs.2022.100996.

52. . Chun-Yu Lai, Linjie Zhou, Zhiguo Yuan, Jianhua Guo (2021). Hydrogen-driven microbial biogas upgrading: Advances, challenges and solutions. Water Research, V. 197, 117120. https://doi.org/10.1016/j.watres.2021.117120.

53. . Irini Angelidaki, Laura Treu, Panagiotis Tsapekos, Gang Luo, Stefano Campanaro, Henrik Wenzel, Panagiotis G. Kougias (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, V. 36, I. 2, 452-466. https://doi.org/10.1016/j.biotechadv.2018.01.011.

54. . Diego Curto, Mariano Martín (2019). Renewable based biogas upgrading. Journal of Cleaner Production, V. 224, 50-59. https://doi.org/10.1016/j.jclepro.2019.03.176.

55. . Shanfei Fu, Irini Angelidaki, Yifeng Zhang (2021). In situ Biogas Upgrading by CO2-to-CH4 Bioconversion. Trends in Biotechnology, V. 39, I. 4, 336-347. https://doi.org/10.1016/j.tibtech.2020.08.006.

56. . Ansys. Engineering Simulation Software. https://www.ansys.com/

57. . Panchenko V., Chirskiy S., KharchenkoV. V. Application of the Software System of Finite Element Analysis for the Simulation and Design Optimization of Solar Photovoltaic Thermal Modules. Handbook of Research on Smart Computing for Renewable Energy and Agro-Engineering, 2019, 106-131, DOI: 10.4018/978-1-7998-1216-6.ch005.

58. . Panchenko V., Izmailov A., Kharchenko V., Lobachevskiy Ya (2020). Photovoltaic Solar Modules of Different Types and Designs for Energy Supply. International Journal of Energy Optimization and Engineering, Volume 9, Issue 2, 74-94. DOI: 10.4018/IJEOE.2020040106.

59. . Panchenko V. A., Daus Yu. V., Kovalev A. A., Litty Yu. V., Katraeva I. V. Modeling the energy supply of a biogas plant based on solar modules of various designs. International Journal of Hydrogen Energy, Volume 51, Part D, 2023, 119-129. https://doi.org/10.1016/j. ijhydene.2023.09.320.

60. . Wong H. Y. Handbook of essential formulae and data for Heat Transfer for Engineers (1977). London, New York: Longman, 236 pp.


Рецензия

Для цитирования:


Панченко В.А., Чирский С.П., Ковалёв А.А., Литти Ю.В., Караева Ю.В., Катраева И.В. Моделирование и изготовление солнечных модулей различной конструкции для энергоснабжения биогазовой установки. Альтернативная энергетика и экология (ISJAEE). 2024;(2):12-36. https://doi.org/10.15518/isjaee.2024.02.012-036

For citation:


Panchenko V.A., Chirsky S.P., Kovalev A.A., Litti Yu.V., Karaeva Yu.V., Katraeva I.V. Modeling and manufacturing of solar modules of various designs for energy supply of the biogas plant. Alternative Energy and Ecology (ISJAEE). 2024;(2):12-36. (In Russ.) https://doi.org/10.15518/isjaee.2024.02.012-036

Просмотров: 134


ISSN 1608-8298 (Print)