Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Hydrogen fuel generation system for petrol internal combustion engines passenger cars

https://doi.org/10.15518/isjaee.2024.02.134-146

Abstract

This article reviews advances in hydrogen fuel engine design; the main characteristics of the hybrid engine are studied; prospects for further research are outlined; development and improvement of engine designs, research of processes in engines running on natural gas and hydrogen. Transport is one of the key elements of modern civilization. Its condition and development prospects largely depend on the ability to supply transport power plants with fuel. The depletion of liquid hydrocarbon fuel reserves and problems of environmental pollution may present humanity with a choice – either to reduce transport transportation or to find new ways to supply energy to transport. OBJECTIVE: To review the electrochemical technologies used for the production of hydrogen at gas stations and the operation of hybrid electric vehicle engines using fuel cell batteries. Conduct a comparative analysis of the production and use of energy by electrochemical and traditional methods in vehicles. METHODS are based on analysis of literature data and mathematical calculations. For a passenger electric vehicle, the amount of electricity that can be obtained in a fuel cell by processing 1 kg of hydrogen was calculated. It has been shown that the specific fuel consumption for a hydrogen electric vehicle averages 1 kg of hydrogen per 100 km. Hydrogen has the potential to be the sustainable fuel of the future, reducing global dependence on fossil fuel resources and reducing carbon emissions from the transportation industry.

About the Authors

O. A. Filina
Kazan State Energy University; Novosibirsk State Technical University
Russian Federation

Filina Olga Alexeevna, assistant at the Department of Electrical Engineering Complexes

Kazan

Novosibirsk



B. V. Malozyomov
Kazan State Energy University
Russian Federation

Malozyomov Boris Vitalievich, Associate Professor, Department of Electrical Engineering Complexes

Kazan



N. I. Shhurov
Kazan State Energy University
Russian Federation

Shhurov Nickolay Ivanovich, Doctor of Technical Sciences, Professor, Head of the Department of Electrical Engineering Complexes

Kazan



References

1. . Malyshenko S. P., Borzenko V. I., Dunikov D. O., Nazarova O. V. Metal hydride technologies of hydrogen energy storage for independent power supply system’s constructed on the basis of renewable sources of energy // Thermal Engineering (English translation of Teploenergetika). – 2012. – T. 59. – No. 6. – P. 468-478.

2. . Shustrov, F. A. Features of the use of hydrogen fuel in internal combustion engines for autonomous hybrid energy systems https://science-education.ru/pdf/2013/5/127.pdf

3. . Aneke M., Wang M. Energy storage technologies and real life applications – A state of the art review // Applied Energy. – 2016. – T. 179. – P. 350-377.

4. . Zhang X., Chan S. H., Ho H. K., Tan S. -C., Li M., Li G., Li J., Feng Z. Towards a smart energy network: The roles of fuel/electrolysis cells and technological perspectives // International Journal of Hydrogen Energy. – 2015. – T. 40. – No. 21. – P. 6866-6919.

5. . Emonts B., Schiebahn S., Görner K., Lindenberger D., Markewitz P., Merten F., Stolten D. Re-energizing energy supply: Electrolytically-produced hydrogen as a flexible energy storage medium and fuel for road transport // Journal of Power Sources. – 2017. – T. 342. – P. 320-326.

6. . Oliveira D. S. A Three-Phase High-Frequency Semicontrolled Rectifier for PM WECS / D. S. Oliveira, M. M. Reis, C. Silva, L. B. Colado, F. Antunes, B. L. Soares // IEEE Transactions on Power Electronics. – Vol. 25. – No. 3. – P. 677-685.

7. . Ershov M.I., Prokofiev V.E., Yanovich K.V. Calculation of the main parameters of an inverter for electrical installations using solid oxide fuel cells //VA MTO, St. Petersburg. – 2019. – No. 3(4). - WITH.110- 116.

8. . Andriyanov A. I., Bulokhov N. M., Mikhalchenko G. Ya. Control of the dynamics of pulsed DC voltage converters. – Electricity, 2013. – No. 8. – P. 41-49.

9. . Faddeev N. A., Belichenko M. A., Serik A. V., Sokolova V. A., Smirnova N. V. Study of the influence of changing the load profile on the performance of a stack based on fuel cells with a proton exchange membrane. //[https://elektromekhanika.npi-tu.ru/index.php/electromeh/article/view/2277]doi.org/10.17213/0136-3360-2022-4-25-30.

10. . Wang Y., Diaz D. F. R., Chen K. S., Wang Z., & Adroher X. C. Materials, technological status, and fundamentals of PEM fuel cells—a review // Materials today. – 2020. – T. 32. – P. 178-203.

11. . Vasyukov I.V., Pavlenko A.V., Batishchev D.V. Review and analysis of topologies of converters of power supply systems based on hydrogen fuel cells for unmanned aerial vehicles of the kilowatt power class. Izv. universities Electromechanics. – 2022. – T. 65. – No. 2. – P. 19.

12. . Borup, R., Meyers, J., Pivovar, B., Kim, Y. S., Mukundan, R., Garland. Scientific aspects of polymer electrolyte fuel cell durability and degradation // Chemical reviews. – 2007. – T. 107. – No. 10. – P. 3904-3951.

13. . Ferreira H. L., Garde R., Fulli G., Kling W., Lopes J. P. Characterisation of electrical energy storage technologies // Energy. – 2013. – Т. 53. – C. 288-298.

14. . Aarhaug T. A., Svensson A. M. Degradation rates of PEM fuel cells running at open circuit voltage // ECS Transactions. – 2006. – Т. 3. – № 1. – С. 775.

15. . Anastasiadis A. G., Konstantinopoulos S. A., Kondylis G. P., Vokas G. A., Papageorgas P. Effect off uelcell units in economic and environmental dispatch of a Microgrid with penetration of photovoltaic and microturbine units // International Journal of Hydrogen Energy. – 2017. – Т. 42. – № 5. – C. 3479-3486.

16. . Martyushev N.V., Malozemov B.V., Sorokova S.N., Efremenkov E.A., Valuev D.V., Tsi M. Review of models and methods for determining and predicting the reliability of technical systems and transport. Mathematics, 2023, 11, 3317. doi: 10.3390/math11153317

17. . Martyushev N. V., Malozemov B. V., Filina O. A., Sorokova S. N., Efremenkov E. A., Valuev D. V., Tsi M. Stochastic models and processing of probabilistic data for solving the problem of increasing reliability of electric freight transport. Mathematics, 2023, 11, 4836. doi: 10.3390/math11234836

18. . Kukartsev V.V., Gozbenko V.E., Konyukhov V.Yu., Mikhalev A.S., Kukartsev V.A., Tynchenko Yu.A. Determination of the reliability of autonomous operation of urban electric transport using diagnostic parameters. World Electr. Weh. J. 2023, 14, 334. doi: 10.3390/wevj14120334.

19. . Boychuk I. P., Grinek A. V., Martyushev N. V., Klyuev R. V., Malozemov B. V., Tynchenko V. S., Kukartsev V. A., Tynchenko Yu. A., Kondratyev S. . I. Methodological approach to modeling the ship’s electrical power system. Energies 2023, 16, 8101. doi: 10.3390/en16248101

20. . Filina O. A., Tynchenko V. S., Kukartsev V. A., Bashmur, K. A., Pavlov P. P., Panfilova, T. A. Increasing the efficiency of diagnostics of the brush-commutator unit of a DC electric motor. Energies 2024, 17, 17. doi: 10.3390/en17010017

21. . Sorokova S. N., Efremenkov E. A., Valuev D. V., Tsi M. Analysis of a predictive mathematical model of weather changes based on neural networks. Mathematics 2024, 12, 480. doi: 10.3390/math12030480

22. . Kukartsev V.V., Konyukhov V.Yu., Oparina, T.A., Sevryugina N.S., Gozbenko V.E., Kondratiev, V.V. Determination of the operational characteristics of an electric vehicle traction battery. World Electr. Weh. J. 2024, 15, 64. doi: 10.3390/wevj15020064.

23. . Sorokova S. N., Efremenkov E. A., Valuev D. V., Tsi M. Mathematical modeling of the parameters of traction equipment of electric trucks. Mathematics 2024, 12, 577. doi: 10.3390/math12040577


Review

For citations:


Filina O.A., Malozyomov B.V., Shhurov N.I. Hydrogen fuel generation system for petrol internal combustion engines passenger cars. Alternative Energy and Ecology (ISJAEE). 2024;(2):134-146. (In Russ.) https://doi.org/10.15518/isjaee.2024.02.134-146

Views: 119


ISSN 1608-8298 (Print)