

Development of portable energy sources based on hydrogen fuel cell with regeneration
https://doi.org/10.15518/isjaee.2024.02.147-165
Abstract
The paper was the first to analyze the possibility of using small fuel cells to power automation devices, analyze their disadvantages and advantages, and their demand in modern electric power industry, taking into account the processes characteristic of low-voltage control circuits. The possibilities of using an economical current source as a current source for emergency power supply of automated control system devices are considered, which can create an effective commercial basis for the implementation of this solution in an industrial production area in conditions of possible power outages (Far North, Far East, conditions of remoteness of the central power supply), An analysis of the areas of application of fuel cells was carried out. The technical characteristics of elements for powering automation devices have been determined, and chemical and electrical calculations of the fuel cell under study have been carried out.
About the Authors
B. V. MalozyomovRussian Federation
Malozyomov Boris Vitalievich, Associate Professor, Department of Electrical Engineering Complexes
630073, Novosibirsk, Karl Marx Ave., 20
E. G. Porsev
Russian Federation
Porsev Evgenij Georgievich, Professor of the Department of Electrical Engineering Complexes
630073, Novosibirsk, Karl Marx Ave., 20
References
1. . Blaajberg F. PWM Z-source NPC inverter / P. C. Lox, F. Blaajberg, S. Y. Feng, R. N. Soon // Proc. APEC2006. – 2006. – P. 40-46.
2. . Li R. An active modulation technique for single-phase grid connected CSI / R. Li, H. S. Chung, T. K. M. Chan //IEEE Transitions on Power Electronic. – 2007. – Vol. 22. – P. 1373-1380.
3. . Volkov A. G. Analysis of New Multizone Rectifier for Electric Locomotives of VI85 Type / A. P. Kosarev, A. G. Volkov, G. S. Zinoviev // International Conference and Seminar on Micro/Nanotechnologies and Electron Devices (EDM 2010) . – Erlagol, Altai. – June 30-July 4, 2010. – P. 475-479.
4. . Z. Bai, Z. Zhang, Y. Zhang A Generalized Three-Phase Multilevel Current Source Inverter with Carrier Phase-Shifted SPWM / Z. Bai, Z. Zhang, Y. Zhang // IEEE Trans. Ind. Electron. – P. 220-227.
5. . Malyshenko S. P., Borzenko V. I., Dunikov D. O., Nazarova O. V. Metal hydride technologies of hydrogen energy storage for independent power supply systems constructed on the basis of renewable sources of energy // Thermal Engineering (English translation of Teploenergetika). – 2012. – T. 59. – No. 6. – P. 468-478.
6. . Gahleitner G. Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications // International Journal of Hydrogen Energy. – 2013. – T. 38. – No. 5. – P. 2039- 2061.
7. . Aneke M., Wang M. Energy storage technologies and real life applications – A state of the art review // Ap-plied Energy. – 2016. – T. 179. – P. 350-377.
8. . Zhang X., Chan S. H., Ho H. K., Tan S. -C., Li M., Li G., Li J., Feng Z.Towards a smart energy network: The roles of fuel/electrolysis cells and technological perspectives // International Journal of Hydrogen Energy. – 2015. – T. 40. – No. 21. – P. 6866-6919.
9. . Emonts B., Schiebahn S., Görner K., Lindenberger D., Markewitz P., Merten F., Stolten D. Re-energizing energy supply: Electrolytically-produced hydrogen as a flexible energy storage medium and fuel for road transport // Journal of Power Sources. – 2017. – T. 342. – P. 320-326.
10. . Oliveira D. S. A Three-Phase High-Frequency Semicontrolled Rectifier for PM WECS / D. S. Oliveira, M. M. Reis, C. Silva, L. B. Colado, F. Antunes, B. L. Soares // IEEE Transactions on Power Electronics. – Vol. 25, no. 3. – P. 677-685.
11. . Ershov M.I., Prokofiev V.E., Yanovich K.V. Calculation of the main parameters of an inverter for electrical installations using solid oxide fuel cells // VA MTO, St. Petersburg. – 2019. – No. 3(4). – pp. 110-116.
12. . Andriyanov A. I., Bulokhov N. M., Mikhalchenko G. Ya. Control of the dynamics of pulsed DC voltage converters. – Electricity, 2013. – No. 8. – P. 41-49.
13. . Faddeev N. A., Belichenko M. A., Serik A. V., Sokolova V. A., Smirnova N. V. Study of the influence of changing the load profile on the performance of a stack based on fuel cells with a proton exchange membrane. //[https://elektromekhanika.npi-tu.ru/index.php/electromeh/article/view/2277] doi.org/10.17213/0136-3360-2022-4-25-30.
14. . Wang Y., Diaz D. F. R., Chen K. S., Wang Z., & Adroher X. C. Materials, technological status, and fundamentals of PEM fuel cells-a review // Materials today. – 2020. – T. 32. – P. 178-203.
15. . Vasyukov I.V., Pavlenko A.V., Batishchev D.V. Review and analysis of topologies of converters of power supply systems based on hydrogen fuel cells for unmanned aerial vehicles of the kilowatt power class. Izv. universities Electromechanics. – 2022. – T. 65. – No. 2. – P. 19.
16. . Borup, R., Meyers, J., Pivovar, B., Kim, Y. S., Mukundan, R., Garland. Scientific aspects of polymer elec-trolyte fuel cell durability and degradation // Chemical reviews. – 2007. – T. 107. – No. 10. – P. 3904- 3951.
17. . Ferreira H. L., Garde R., Fulli G., Kling W., Lopes J. P. Characterization of electrical energy storage technologies // Energy. – 2013. – T. 53. – P. 288-298.
18. . Aarhaug T. A., Svensson A. M.Degradation rates of PEM fuel cells running at open circuit voltage // ECS Transactions. – 2006. – T. 3. – No. 1. – P. 775.
19. . Anastasiadis A. G., Konstantinopoulos S. A., Kondylis G. P., Vokas G. A., Papageorgas P. Effect of fuel cell units in economic and environmental dispatch of a Microgrid with penetration of photovoltaic and micro turbine units // International Journal of Hydrogen Energy. – 2017. – T. 42. – No. 5. – P. 3479-3486.
20. . Abdelfatah Kolli, Arnaud Gaillard, Alexandre De Bernardinis, Olivier Betoux, Daniel Hissel, Zoubir Khatir A review on DCDC converter architectures for power fuel cell applications // Energy Conversion and Man-agement, November 2015. – Vol. 105. – R. 716-730. DOI: 10.1016/j.enconman.2015.07.060
21. . Dawei Gao, Zhenhua Jin, Jiexun Liu, Minggao Ouyang An interleaved step-up/step-down converter for fuel cell vehicle applications // International Journal of Hydrogen Energy, December 2016. – Vol. 41. – Issue 47, 21. P. 22422-22432. DOI: 10.1016/j.ijhydene.2016.09.171
22. . Kolesnikov S.V., Leonov A.P. Reliability of insulation of stator windings of frequency-controlled electric motors // Electrical engineering and information complexes and systems. – 2022. – No. 1. – T. 18. – P. 33-62.
23. . Dudkin A. N., Leonov A. P., Supueva A. S. The influence of defects in interturn insulation on its resistance to operational loads characteristic of energy-efficient methods of controlling electrical equipment. – Tomsk: Izvestia TPU, 2015. – T. 326. – No. 11. – P. 83-89.
24. . Colak I. Review of multilevel voltage source inverter topologies and control schemes / I. Colak, E. Kabalci, R.Bayindir // Energy Conversion and Management. – 2011. – Vol. 52. – P. 1114-1128.
25. . Panagis P. Comparison of State of the Art Multilevel Inverters / P. Panagis, F. Stergiopoulos, P. Marabeas // Power Electronics Specialists Conference, 2008. PESC 2008. IEEE Conference Publications. – P. 4296-4301.
26. . Non-traditional and renewable energy sources: textbook / ed. V. V. Denisova. – Rostov n/d: Phoenix, 2015. – 382 p.
27. . Bezrukikh P. P., Strebkov D. S. Renewable energy: strategy, resources, technologies. – M.: RASHN, 2005.
28. . Gabderakhmanova T. O., Director L. B., Popel O. S., Tarasenko A. B.; No. 23; Alternative energy ecology, 2015. P. 195. / Gabderakhmanova T. S. Comparative analysis of electrical energy storage devices.
29. . Booth D. A., B. l. Alievsky, S. R. Mizjurin, P. V. Vasiukevich; Ed. Booth D. A. M.: Jeneroatomizdat, 1991. S. 398. / Booth D. A. Nakopiteli jenergii.
30. . Varypaev V. N. Himicheskie istochniki toka / V. N. Varypaev, Dasojan M. A., Nicholas A. M.: Vysshaja Shkola, 1990. – S. 240.
31. . Chervonenko A.P., Kotin D.A., Rozhko A.V. Transfer of load from the main network to the backup one using a standard automatic transfer switch // News of higher educational institutions. Energy problems. – 2021. – T. 23. – No. 5. – P. 160-171.
32. . Power semiconductor devices: Handbook / O. G. Chebovsky, L. G. Moiseev, R. P. Nedoshiven. – 2nd ed. reworked and additional – M: Energoatomizdat, 1985. – 400 p.
33. . Boyarskaya N.P. Synthesis of filter compensating devices for power supply systems: monograph / N.P. Boyarskaya, V.P. Dovgun, D.E. Egorov. – Krasnoyarsk: SFU, 2014. – 192 p.
34. . Ivakin V.N., Kovalev V.D., Magnitsky A.A. Standardization of energy efficiency of distribution transformers // Unified Network Energy. – 2017. – No. 5 (34). – P. 20-31.
35. . Beletsky A.F. Theory of linear electrical circuits. – St. Petersburg: Lan Publishing House, 2008. – 544 p.
36. . The world’s first commercial fuel cell powerpack for drone DP30 Powerpack – [Electronic resource]. Access mode: https://www.doosanmobility.com/en/products/powerpack/
37. . Tao Lei, Zhou Yang, Zicun Lin, Xiaobin Zhang State of art on energy management strategy for hybridpowered unmanned aerial vehicle // Chinese Journal of Aeronautics, June 2019. – Vol. 32. – Issue 6. – P. 1488- 1503. DOI: 10.1016/j.cja.2019.03.013.
38. . Lepanov M., Rozanov Y. Multifunctional regulator based on SMES and power electronic converter for in-crease of power quality and power supply reliability // Power Engineering, Energy and Electrical Drives POWERENG), 2013 Fourth International Conference on. – IEEE, 2013. – P. 1387-1391.
39. . Zirka S. E., Moroz Yu. I., Moroz E. Yu., Tarchutkin A. L. Topological models of a transformer // Electricity, 2012. – No. 10. – P. 33-42.
40. . Vinogradov A. B, Korotkov A. A. Control algorithms for high-voltage multilevel frequency converter: monograph.– Ivanovo: Publishing house Ivanovo State Energy University, 2018. – 184 p.
41. . Akagi H. Active harmonic filters // Proceedings of the IEEE. – 2005. – T. 93. – Vol. 12. – P. 2128-2141.
42. . Martyushev N.V., Malozemov B.V., Sorokova S.N., Efremenkov E.A., Valuev D.V., Tsi M. Review of models and methods for determining and predicting the reliability of technical systems and transport. Mathematics, 2023, 11, 3317. doi: 10.3390/math11153317
43. . Martyushev N. V., Malozemov B. V., Filina O. A., Sorokova S. N., Efremenkov E. A., Valuev D. V., Tsi M. Stochastic models and processing of probabilistic data for solving tasks of increasing the reliability of electric freight transport. Mathematics, 2023, 11, 4836. doi: 10.3390/math11234836
44. . Kukartsev V.V., Gozbenko V.E., Konyukhov V.Yu., Mikhalev A.S., Kukartsev V.A., Tynchenko Yu.A. Determination of the reliability of autonomous operation of urban electric transport using diagnostic parameters. World Electr. Weh. J. 2023, 14, 334. doi: 10.3390/wevj14120334.
45. . Boychuk I. P., Grinek A. V., Martyushev N. V., Klyuev R. V., Malozemov B. V., Tynchenko V. S., Kukartsev V. A., Tynchenko Yu. A. ., Kondratyev S.I. Methodological approach to modeling the ship’s electrical power system. Energies 2023, 16, 8101. doi: 10.3390/en16248101
46. . Filina O. A., Tynchenko V. S., Kukartsev V. A., Bashmur, K. A., Pavlov P. P., Panfilova, T. A. Increasing the efficiency of diagnostics of the brush-commutator unit of a DC electric motor current. Energies 2024, 17, 17. doi: 10.3390/en17010017
47. . Sorokova S. N., Efremenkov E. A., Valuev D. V., Tsi M.Analysis of a predictive mathematical model of weather changes based on neural networks. Mathematics 2024, 12, 480. doi: 10.3390/math12030480
48. . Kukartsev V.V., Konyukhov V.Yu., Oparina, T.A., Sevryugina N.S., Gozbenko V.E., Kondratyev, V.V. Determination of the operational characteristics of an electric vehicle traction battery. World Electr. Weh. J. 2024, 15, 64. doi: 10.3390/wevj15020064.
49. . Sorokova S. N., Efremenkov E. A., Valuev D. V., Tsi M. Mathematical modeling of the parameters of traction equipment of electric trucks. Mathematics 2024, 12, 577. doi: 10.3390/math12040577
Review
For citations:
Malozyomov B.V., Porsev E.G. Development of portable energy sources based on hydrogen fuel cell with regeneration. Alternative Energy and Ecology (ISJAEE). 2024;(2):147-165. (In Russ.) https://doi.org/10.15518/isjaee.2024.02.147-165