Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Modelling and simulation hybrid electric vehicle with fuel cells

https://doi.org/10.15518/isjaee.2024.02.166-181

Abstract

The article is devoted to the development of simulation model in the MATLAB Simulink software environment of an electric vehicle hybrid traction drive based on fuel cells and lithium battery. The applied topologies of battery and hybrid traction drives are considered. A traction drive model has been synthesized, in which the main energy source is a fuel cell (FC) with a proton exchange membrane (PEM), and the unevenness of the transport load is smoothed out by a high-power buffer storage unit (BSU) based on a lithium titanate (LTO) battery. The dependence of the required BSU capacity on the power of the primary source, reduced to a ton of vehicle weight, was obtained. Based on this, the optimal range of hybrid power plant parameters was determined (FC power from 5 to 11 kW/t, LTO battery capacity from 6 to 10 Ah/t) when driving according to the WLTC load cycle. The estimated fuel consumption in this case was 0,56 kg/(100km·t), and the on-time of the fuel cell was 94,53 %.

About the Authors

N. I. Shchurov
Novosibirsk State Technical University
Russian Federation

Shchurov Nikolai Ivanovic, Doctor of Technical Sciences, Professor, Head of Department «Electrical technical complexes»

630073, Novosibirsk, Karl Marx Ave., 20

Tel. +7-996-376-67-45



S. I. Dedov
Novosibirsk State Technical University
Russian Federation

Dedov Sergei Igorevich, Candidate of Technical Sciences, Associate Professor of the Department. «Electrical technical complexes»

630073, Novosibirsk, Karl Marx Ave., 20

Tel. +7-996-376-67-45



A. A. Shtang
Novosibirsk State Technical University
Russian Federation

Shtang Alexander Alexandrovich, candidate of technical sciences, associate professor, associate professor of the department «Electrical technical complexes»

630073, Novosibirsk, Karl Marx Ave., 20

Tel. +7-996-376-67-45



References

1. . K. G. Logan, J. D. Nelson, C. Brand, A. Hastings. Phasing in electric vehicles: Does policy focusing on operating emission achieve net zero emissions reduction objectives? // Transportation Research Part A: Policy and Practice. – 2021. – № 152 – P. 100-114. https://doi.org/10.1016/j.tra.2021.08.001.

2. . M. Ehsani, K. V. Singh, H. O. Bansal, R. T. Mehrjardi. State of the Art and Trends in Electric and Hybrid Electric Vehicles // Proceedings of the IEEE. – 2021. – № 109(6). – P. 967-984. https://doi.org/10.1109/ jproc.2021.3072788.

3. . J. N. Barkenbus. Prospects for Electric Vehicles // Sustainability. – 2020. – № 12(14). 5813. https://doi.org/10.3390/su12145813.

4. . N. Kittner, I. Tsiropoulos, D. Tarvydas, O. Schmidt, I. Staffell, D. M. Kammen. Electric vehicles // Technological Learning in the Transition to a Low-Carbon Energy System. – 2020. – P. 145-163. https:// doi.org/10.1016/b978-0-12-818762-3.00009-1.

5. . S. Solaymani. CO2 emissions patterns in 7 top carbon emitter economies: the case of transport sector // Energy. – 2018. https://doi.org/10.1016/j.energy.2018.11.145.

6. . G. Santos. Road transport and CO2 emissions: What are the challenges? // Transport Policy. – 2017. – № 59. – P. 71-74. https://doi.org/10.1016/j.tranpol.2017.06.007.

7. . M. Muratori, M. Alexander, D. Arent, M. Bazilian, P. Cazzola, E. M Dede, J. Farrell, C. Gearhart, D. Greene, A. Jenn. The rise of electric vehicles – 2020 status and future expectations. // Progress in Energy. – 2021. – Vol. 3(2). https://doi.org/10.1088/2516-1083/abe0ad.

8. . A. F. Pennington, C. R. Cornwell, K. D. Sircar, M. C. Mirabelli. Electric vehicles and health: A scoping review // Environmental Research – 2024. – Vol. 251, Part 2. https://doi.org/10.1016/j.envres.2024.118697.

9. . J. J. Hwang, W. R. Chang. Characteristic study on fuel cell/battery hybrid power system on a light electric vehicle // Journal of Power Sources. – 2012. – № 207, 1 – P. 111-119, https://doi.org/10.1016/j.jpowsour.2012.02.008.

10. .A. Veziroglu, R. Macario. Fuel cell vehicles: State of the art with economic and environmental concerns // International Journal of Hydrogen Energy. – 2011. – № 35, 1. – P. 25-43, https://doi.org/10.1016/j.ijhydene.2010.08.145.

11. .J. J. Hwang, W. R. Chang., F. B. Weng, A. Su, C.K. Chen. Development of a small vehicular PEM fuel cell system // International Journal of Hydrogen Energy. – 2008. – № 33, 14. – P. 3801-07, https://doi.org/10.1016/j.ijhydene.2008.04.043.

12. .C. E. Thomas Fuel cell and battery electric vehicles compared // International Journal of Hydrogen Energy. – 2009. – № 34, 15. – P. 6005-20, https://doi.org/10.1016/j.ijhydene.2009.06.003.

13. .Fuel Cell Vehicle Market Size, Share & Trends Analysis Report [Электронный ресурс]. – Режим доступа: https://www.novaoneadvisor.com/report/fuel-cell-vehicle-market. – Заглавие с экрана. – (Дата обращения: 15.08.2023).

14. .N. Mebarki, T. Rekioua, Z. Mokrani, D. Rekioua, S. Bacha. Fuel cell and battery electric vehicles compared // International Journal of Hydrogen Energy. – 2016. – № 41, 45. – P. 20993-21005, https://doi.org/10.1016/j.ijhydene.2016.05.208.

15. .N. I. Shurov, S. I. Dedov, A. A. Shtang // Journal of Physics: Conference Series. – 2020. – Vol. 1661: International Conference on Information Technology in Business and Industry (ITBI 2020), Novosibirsk, 6-8 Apr. 2020. – Art. 012193 (8 p.). https://doi.org/10.1088/1742-6596/1661/1/012193.

16. .Current status and operating principles of hydrogen power plant in urban transport / E. A. Spiridonov, N. I. Schurov, M. V. Yaroslavtsev, E. G. Langeman, K. I. Kulikov // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 560: International Conference on Mechanical Engineering, Automation and Control Systems, 2018. – Art. 012111 (5 p.). – https://doi.org/10.1088/1757-899X/560/1/012111.

17. . Shchurov N. I., Shtang A. A., Dedov S. I., Latyshev R. N. Application of a combined energy storage device to increase the service life of an electric vehicle battery // Electric Power Supply. – 2022. – No. 2. – P. 24-33. EDN: VHCWNR

18. .Andriyashin S. N. Fuel cells as a future of automotive industry: A review of current developments / S. N. Andriyashin, N. I. Schurov. – DOI: 10.1088/1742-6596/2061/1/012002. – Text: direct // Journal of Physics: Conference Series. – 2021. – Vol. 1061: International Conference on Actual Issues of Mechanical Engineering (AIME 2021), Novorossiysk, 15-16 June 2021. – Art. 012002 (6 p.).

19. .T. S. Babu, K. R. Vasudevan, V. K. Ramachandaramurthy, S. B. Sani, S. CheMud, R. M. Lajim. A comprehensive review of hybrid energy storage systems: converter topologies, control strategies and future prospects // IEEE Access. – 2020. Vol. 8. https://doi.org/10.1109/access.2020.3015919.

20. .T. Zimmermann, P. Keil, M. Hofmann, M. F. Horsche, S. Pichlmaier, A. Jossen. Review of system topologies for hybrid electrical energy storage systems // Journal of Energy Storage. – 2016. – Vol. 8. – P. 78-90. https://doi.org/10.1016/j.est.2016.09.006.

21. .A. Khaligh, Li Zhihao. Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-In Hybrid Electric Vehicles: State of the Art // IEEE Transactions on Vehicular Technology. – 2010. – Vol. 59(6) – P. 2806-14. https://doi.org/10.1109/tvt.2010.2047877.

22. .K. I. Kulikov, N. I. Schurov, M. V. Yaroslavtsev, E. A. Spiridonov, E. G. Langeman. Analysis of maximum braking power for determination of energy storage device characteristics within fuel cell electric bus // Journal of Physics: Conference Series. – 2019. – Vol. 1333, iss. 5. – Art. 052016 (6 p.). https://doi.org/10.1088/1742-6596/1333/5/052016.

23. .Shiqi Liu, Yang Bin, Yaoyu Li, Birgit Scheppat B. Hierarchical MPC Control Scheme for Fuel Cell Hybrid Electric Vehicles // IFAC-PapersOnLine. – 2018. – № 51, 31. – P. 646-652, https://doi.org/10.1016/j.ifacol.2018.10.151.

24. .J. Bauman, M. Kazerani. A Comparative Study of Fuel-Cell-Battery, Fuel-Cell-Ultracapacitor, and Fuel-Cell-Battery-Ultracapacitor Vehicles // IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY. – 2008. – № 57, 2. – P. 760-769, https://doi.org/10.1109/tvt.2007.906379.

25. .M. İnci, M. Büyük, M.H. Demir, G. İlbey. A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects // Renewable and Sustainable Energy Reviews. – 2021. – № 137, https://doi.org/10.1016/j.rser.2020.110648.

26. .M. Muthukumar, N. Rengarajan, B. Velliyangiri, M. A. Omprakas, C. B. Rohit, U. Kartheek. The development of fuel cell electric vehicles – A review // Materials Today: Proceedings – 2021. – № 45, 2 – P. 1181-1187. https://doi.org/10.1016/j.matpr.2020.03.679.

27. .Caisheng Wang, Hashem Nehrir M., Hongwei Gao. Control of PEM Fuel Cell Distributed Generation Systems // IEEE Transactions on Energy Conversion – 2006. – № 21, 2. – P. 586-595. https://doi.org/10.1109/TEC.2005.860404.

28. .Teng Teng, Xin Zhang, Han Dong, Qicheng Xue. A comprehensive review of energy management optimization strategies for fuel cell passenger vehicle // International Journal of Hydrogen Energy – 2020. – № 45, 39. – P. 20293-303. https://doi.org/10.1016/j.ijhydene.2019.12.202.

29. .C. Deutsch, A. Chiche, S. Bhat, C. Lagergren, G. Lindbergh, J. Kuttenkeuler. Evaluation of energy management strategies for fuel cell/battery-powered underwater vehicles against field trial data // Energy Conversion and Management: X – 2022. – № 14. https://doi.org/10.1016/j.ecmx.2022.100193.

30. .B. R. Trilaksono, A. Syaichu-Rohman, C. J. Dronkers, A. Sasongko. Energy Management of Fuel Cell/Battery/Supercapacitor Hybrid Power Sources Using Model Predictive Control // IEEE Transactions on Industrial Informatics – 2014. – № 10, 4. https://doi.org/10.1109/TII.2014.2333873.

31. .Z. Chen, Y. Liu, M. Ye, Y. Zhang, Z. Chen, G. Li. A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles // Renewable and Sustainable Energy Reviews. – 2021. – № 151, 111607. https://doi.org/10.1016/j.rser.2021.111607.

32. .L. Tribioli, A. Fumarola, F. Martini. Methodology Procedure for Hybrid Electric Vehicles Design // SAE Technical Paper Series. – 2011. https://doi.org/10.4271/2011-24-0071.

33. .A. Lange, F. Küçükay. A new, systematic approach to determine the global energy optimum of a hybrid vehicle. // Automot. Engine Technol. – 2016. – № 1, – P. 35-46. https://doi.org/10.1007/s41104-016-0011-3.

34. .M. Tutuianu, P. Bonnel, B. Ciuffo, T. Haniu, N. Ichikawa, A. Marotta, H. Steven. Development of the World-wide harmonized Light duty Test Cycle (WLTC) and a possible pathway for its introduction in the European legislation // Transportation Research Part D: Transport and Environment. – 2015. – № 40. – P. 61-75. https://doi.org/10.1016/j.trd.2015.07.011.

35. .Calculation of hybrid bus power demands by standard driving cycles / M. V. Yaroslavtsev, A. A. Shtang, S. I. Dedov, X. Wu // The 19 international conference of young specialists on micro/nanotechnologies and electron devices, EDM 2018: proc., Erlagol, Altai, 29 June – 3 July 2018. – IEEE Computer Society, 2018. – P. 469-472. – ISBN 978-153865021-9. https://doi.org/10.1109/EDM.2018.8435023.

36. .K. Ettihir, M. Higuita Cano, L. Boulon, K. Agbossou. Design of an adaptive EMS for fuel cell vehicles // International Journal of Hydrogen Energy, – 2017. – № 42(2) – P. 1481-1489. https://doi.org/10.1016/j.ijhydene.2016.07.211.

37. .D. Feroldi, M. Serra, J. Riera. Energy Management Strategies based on efficiency map for Fuel Cell Hybrid Vehicles // Journal of Power Sources. – 2009. – № 190(2). – P. 387-401. https://doi.org/10.1016/j.jpowsour.2009.01.040.

38. .H. -Y. Hwang. Developing Equivalent Consumption Minimization Strategy for Advanced Hybrid System-II Electric Vehicles // Energies. – 2020. – № 13, 2033. https://doi.org/10.3390/en13082033.

39. .M. J. Khan, M. T. Iqbal. Dynamic Modelling and Simulation of a Fuel Cell Generator, Fuel Cells Special Issue: Modelling of Fuel Cell Systems // Fuel Cells. – 2005. – № 5, – P. 97-104. https://doi.org/10.1002/fuce.200400054.

40. .Y. He, C. Miao, J. Wu, X. Zheng, X. Liu, F. Han. Research on the Power Distribution Method for Hybrid Power System in the Fuel Cell Vehicle // Energies. – 2021. – № 14, 734. https://doi.org/10.3390/en14030734.

41. .S. N. Motapon, O. Tremblay, L. A. Dessaint. Development of a generic fuel cell model: application to a fuel cell vehicle simulation // International Journal of Power Electronics. – 2012. – № 4(6), 505. https://doi.org/10.1504/ijpelec.2012.052427.

42. . Shchurov N. I. Analysis of the influence of driving modes of electric vehicles on the aging of traction batteries based on the WLTC journal / N. I. Shchurov, A. A. Shtang, S. I. Dedov // Journal of the Siberian Federal University. Series: equipment and technology. – 2020. – №. 13. – P. 12-18. EDN: TBRUXN.

43. . Shchurov N. I., Shtang A. A., Dedov S. I., Xiaogang Wu. Analysis of the influence of driving modes of electric vehicles on the aging process of traction batteries based on the WLTC cycle // Journal of Siberian Federal University. Technics and techology. – 2020. – P. 977-990. https://doi.org/10.17516/1999-494x-0279.

44. . SCiB. High-power type cells [Electronic resource]. – Access mode: https://www.global.toshiba/ww/products-solutions/battery/scib/product/cell/high/power.html. – Title from the screen. – (Date of access: 08.15.2023).

45. . K. Wu, J. Yang, Y. Zhang. Investigation on Li4Ti5O12 batteries developed for hybrid electric vehicle // J Appl Electrochem. – 2012. – № 42. – P. 989-995. https://doi.org/10.1007/s10800-012-0442-0.


Review

For citations:


Shchurov N.I., Dedov S.I., Shtang A.A. Modelling and simulation hybrid electric vehicle with fuel cells. Alternative Energy and Ecology (ISJAEE). 2024;(2):166-181. (In Russ.) https://doi.org/10.15518/isjaee.2024.02.166-181

Views: 134


ISSN 1608-8298 (Print)