

Анализ создания пускового момента трехкаскадного синхронного генератора для новой электростартерной системы на базе водородных топливных элементов
https://doi.org/10.15518/isjaee.2024.02.182-197
Аннотация
Современные тенденции в отраслях, связанных с автономными, подвижными объектами, такими как авиастроение, направлены на увеличение доли электрификации или на полную замену всех агрегатов в пользу электрических. Замена узлов и агрегатов на полностью электрические соответствует концепции полностью электрического самолета, основой которого являются новые источники питания и источники электродвижения, такие как – литий-ионные аккумуляторы, водородные элементы питания, источники на основе возобновляемой энергетики. В то же время повышаются требования к энергоэффективности и массогабаритным показателям узлов и агрегатов. Эти потребности могут быть учтены за счет многоцелевого использования оборудования, а также с помощью новых систем, сочетающих в себе ряд функций. В статье рассматривается использование авиационного трёхкаскадного синхронного генератора в качестве пускового устройства для газотурбинного двигателя. Проанализированы проблемы, связанные с использованием трёхкаскадного генератора, и предложен способ их решения. В статье представлен способ создания пускового момента с использованием реактивной составляющей электромагнитного момента для синхронного явнополюсного генератора. Анализ проведен с точки зрения формирования электромагнитного момента в авиационном генераторе с помощью инвертора напряжения. Получено обобщенное выражение для момента, регулируемое и управляемое электрическими параметрами преобразователя частоты.
Об авторах
М. А. ЖарковРоссия
Жарков Максим Андреевич, кандидат техн. наук, доцент кафедры Электроники и Электротехники, заместитель директора Института силовой электроники
630073, Новосибирск, пр. Карла Маркса, 20
Р. Ю. Сараханова
Россия
Сараханова Регина Юрьевна, младший научный сотрудник
630073, Новосибирск, пр. Карла Маркса, 20
С. А. Харитонов
Россия
Харитонов Сергей Александрович, доктор технических наук, профессор, заведующий кафедрой Электроники и Электротехники, директор Института силовой электроники
630073, Новосибирск, пр. Карла Маркса, 20
Список литературы
1. . A. Eid, H. El-Kishky, M. Abdel-Salam and M. T. El-Mohandes, «On Power Quality of Variable-Speed Constant-Frequency Aircraft Electric Power Systems,» in IEEE Transactions on Power Delivery, vol. 25, no. 1, pp. 55-65, Jan. 2010.
2. . V. Madonna, P. Giangrande and M. Galea, «Electrical Power Generation in Aircraft: Review, Challenges, and Opportunities» in IEEE Transactions on Transportation Electrification, vol. 4, no. 3, pp. 646-659, Sept. 2018.
3. . J. Pötter, M. Pfost and G. Schullerus. «A Novel Brushless Excitation System for Synchronous Machines with a Rotating Power Converter». 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Sonderborg, Denmark, 2019, pp. 1-6, doi: 10.1109/CPE.2019.8862391.
4. . J. Kang, Y. Liu and L. Sun. «A Primary-Side Control Method of Wireless Power Transfer for Motor Electric Excitation». 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 2019, pp. 2423-2428, doi: 10.1109/ICIEA.2019.8834016.
5. . Y. Juan, X. Haiyi and Y. Zhangang. «An Active Control Excitation Method of Three-Stage Brushless Synchronous Starter/Generator in Electric Starting Mode for MEA», in IEEE Access, vol. 9, pp. 109763-109774, 2021, doi: 10.1109/ACCESS.2021.3102049.
6. . J. Chen, C. Wang and J. Chen, «Investigation on the Selection of Electric Power System Architecture for Future More Electric Aircraft», in IEEE Transactions on Transportation Electrification. – Vol. 4, no. 2, pp. 563-576, June 2018.
7. . J. He, D. Zhang and D. Torrey. «Recent Advances of Power Electronics Applications in More Electric Aircrafts». – 2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), 2018, pp. 1-8.
8. . M. A. Zharkov and V. E. Sidorov. «Electric Starter System for Launching a Gas Turbine Aircraft Engine». 2019 20th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). – 2019, pp. 700-704.
9. . M. A. Zharkov, S. A. Kharitonov, V. E. Sidorov and R. Y. Dubkova. «The Analysis of the Reactive Launch of Three-stage Synchronous Generator for Aviation Starter-Generator Device». – 2019 International Conference on Electrotechnical Complexes and Systems (ICOECS), 2019, pp. 1-5.
10. . J. Pötter, M. Pfost and G. Schullerus. «Design Aspects of a Novel Brushless Excitation System for Synchronous Machines». 2019 IEEE International Electric Machines & Drives Conference (IEMDC), San Diego, CA, USA, 2019, pp. 1228-1233, doi: 10.1109/IEMDC.2019.8785200.
11. . S. Mao, X. Han, J. Li, Q. Zhang, Z. Hu and L. Xu. «Initial Rotor Position Estimation of Brushless Synchronous Starter/Generators Based on the Excitation System». IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada. – 2021, pp. 1-6, doi: 10.1109/IECON48115.2021.9590000.
12. . Z. Zhang et al. «Research on excitation control method for the three-phase brushless asynchronous excitation system of wound-field synchronous starter/ generators». 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 2017, pp. 2074-2078, doi: 10.1109/ECCE.2017.8096413.
13. . F. Yao, Q. An, X. Gao, L. Sun and T. A. Lipo. «Principle of Operation and Performance of a Synchronous Machine Employing a New Harmonic Excitation Scheme» in IEEE Transactions on Industry Applications. – Vol. 51, no. 5, pp. 3890-3898, Sept.-Oct. 2015, doi: 10.1109/TIA.2015.2425363.
14. . M. D. López, C. A. Platero, E. Rebollo and F. R. Blanquez. «Simplified model of brushless synchronous generator for real time simulation». 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC). – Rome, Italy, 2015, pp. 71-76, doi: 10.1109/EEEIC.2015.7165382.
15. . J. Wei, Y. Yang, B. Zhou and J. Xue. «The integrated method of AC excitation and high-frequency signal injection for the sensorless starting control of brushless synchronous machines». IECON 2017 – 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China. – 2017, pp. 4188-4193, doi: 10.1109/IECON.2017.8216718.
16. . Волокитина Е. В. Исследования по созданию системы генерирования и запуска маршевого двигателя в концепции полностью электрифицированного самолета. Часть 1 / Е. В. Волокитина // Электроника и электрооборудование транспорта. – 2011. – № 4. – С. 24-28.
17. . Вольдек А. И. Электрические машины. Учебник для студентов высш. техн. учебн. заведений. Изд. 2-е, перераб. и доп. JI.: Изд-во «Энергия», 1974.
18. . Иванов-Смоленский A. B. Электрические машины: Учеб. для вузов. 1. – М.: Энергия, 1980.
19. . Балагуров В. А. Проектирование специальных электрических машин переменного тока. – М.: Высшая школа, 1990. – 272 с.
20. . Firago B. I. Theory of electric drive. Minsk: JSC «Technoperspektiva», 2004. – Р. 527.
21. . Шрейнер Р. Т. Математическое моделирование электроприводов переменного тока с полупроводниковыми преобразователями частоты. – Екатеринбург: УРО РАН, 2000. – 654 с.
22. . Слежановский О. В. и др. Системы подчиненного регулирования электроприводов переменного тока с вентильными преобразователями / – М.: Энергоатомиздат, 1983. – 256 с.
23. . Gusev A. L., Kazaryan M. A. Hydrogen Storage. Bayer Material Science (BMS) & The International Science and Technology Center (ISTC). Research Conference, Moscow, Russia, 2007; 40-41.
24. . Gusev A. L., Malozemova E. P., Veziroglu T. N., Hampton M. D. LH2 ultra-long storage technology. Collection of abstracts of the IX International Student Scientific Conference «Polar Lights – 2006. Nuclear Future: Security, Economics and Law». – St. Petersburg, 2006; рр. 182-184.
25. . Gusev A. L. Electrosorption phenomena in layers of shield-vacuum heat insulation of hydrogen reservoirs // Alternative Energy and Ecology (ISJAEE), 4. 2007.
26. . Gusev A. L., Kazaryan M. A. Hydrogen Storage. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 4. 2007.
27. . A. L. Gusev, M. A. Kazaryan. Hydrogen Storage. Bayer Matarial Science (BMS) & The International Science and Technology Center (ISTC). Research Conference, Moscow, Russia, 23-24 January 2007. 40-41.
28. . Gusev A. L. Main environmental problems of the Nizhny Novgorod region and the transition to a hydrogen economy // International Scientific Journal for Alternative Energy and Ecology. – 2006. – No. 1. – Р. 13-24.
29. . Gusev A. L. Hydrogen for Progress. The Second International Conference Alternative sources of energy for big cities. – 2006. – Р. 22.
30. . Frederic A. Lewis. Hydrogen Economy Forum in Russia. Second International Symposium on Safety and Economy of Hydrogen Transport // Platinum Metals Reviev, 2003, 47, (4).
31. . Yu. S. Nechaev, G. A. Filippov, A. L. Gusev. On the experimental and theoretical basis of developing a super hydrogen carbonaceous adsorbent for fuelcell-powered vehicles // In: Book of Abstracts of &th Biennial International Workshop «Fullerenes and Atomic Clusters» (IWAFAC’2005), June 27 – July 1, 2005. – St. Peterburg, Russia, (2005) 267.
32. . Yu. S. Nechaev, A. L. Gusev, B. K. Gupta, O. N. Srivastava, T. N. Veziroglu. On the experimental and theoretical basis developing a «super» hydrogen adsorbent // In: Transactions of International conference «Solid State Hydrogen Storage – Materials and Applications». – January 31 – February 1, 2005, Hyderabad, India (2005).
33. . Yu. S. Nechaev, G. A. Filippov, A. L. Gusev. On the experimental and theoretical basis of developing a super hydrogen carbonaceous adsorbent for fuelcell-powered vehicles // In: Book of Abstracts of &th Biennial International Workshop «Fullerenes and Atomic Clusters» (IWAFAC’2005), June 27 – July 1, 2005. – St. Peterburg, Russia, (2005) 267.
34. . Yu. S. Nechaev, A. L. Gusev, B. K. Gupta, O. N. Srivastava, T. N. Veziroglu. On the experimental and theoretical basis developing a «super» hydrogen adsorbent // In: Transactions of International conference «Solid State Hydrogen Storage – Materials and Applications». – January 31 – February 1, 2005, Hyderabad, India (2005).
35. . Yu. S. Nechaev, A. L. Gusev, B. K. Gupta, O. N. Srivastava, T. N. Veziroglu. On using graphite nanofibers for hydrogen on-board storage. // In: Transactions of International conference «Solid State Hydrogen Storage – Materials and Applications». – January 31 – February 1, 2005, Hyderabad, India (2005).
Рецензия
Для цитирования:
Жарков М.А., Сараханова Р.Ю., Харитонов С.А. Анализ создания пускового момента трехкаскадного синхронного генератора для новой электростартерной системы на базе водородных топливных элементов. Альтернативная энергетика и экология (ISJAEE). 2024;(2):182-197. https://doi.org/10.15518/isjaee.2024.02.182-197
For citation:
Zharkov M.A., Sarakhanova R.Yu., Kharitonov S.A. Analysis of the creation of the starting torque of a three-stage generator for a new electric starter system based on hydrogen fuel cells. Alternative Energy and Ecology (ISJAEE). 2024;(2):182-197. (In Russ.) https://doi.org/10.15518/isjaee.2024.02.182-197