Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Methane-hydrogen transition to hydrogen economy

https://doi.org/10.15518/isjaee.2024.01.087-101

Abstract

Natural gas is one of the key energy carriers in the global energy sector of the XXI century, the role of which is increasing every year due to its operational characteristics. In the future, hydrogen fuel should replace natural gas. Hydrogen is the most efficient and environmentally friendly fuel. In Russia, the technology of adiabatic methane conversion (ACM) has been developed, producing methane-hydrogen fuel (MHM) with a hydrogen content of up to 50 %. This technology significantly simplifies the industrial process of producing hydrogen, since it does not require oxygen production and occurs at lower temperatures (up to 680°C).

About the Author

A. Ya. Stolyarevsky
Center for Integrated Development of Technologies and Energy Technology Systems (CORTES Center)
Russian Federation

Anatoliy Yakovlevich Stolyarevsky - Director,

Moscow, st. Maksimova, 4, 123182



References

1. . Veziroğlu TN, Basar O. Dynamics of a universal hydrogen fuel system. Hydrogenenergy. PartB. PlenumPress; 1974.

2. . Collection of Russian competencies of the hydrogen industry: http://sk-group-c.com/files/katalog_minpromtorg.pdf?ysclid=lqktkjpl7t611482123

3. . Complex for the production, storage and distribution of hydrogen. Patent RU No. 2713349, Prior. 02/28/2019

4. . U.S. Department of Energy Hydrogen Ac-tivities and Hydrogen Shot Overview, March 2022: https://www.energy.gov/sites/default/files/2022-04/fc-expo-2022-doe-h2-overview-h2-shot-update.pdf

5. . FUEL-CELL HYDROGEN LONG-HAUL TRUCKS IN EUROPE: A TOTAL COST OF OWNERSHIP ANALYSIS. THEINTERNATIONALCO UNCILONCLEANTRANSPORTATION. 2022.

6. . Stolyarevsky A. Ya. Nuclear technological complexes based on high-temperature reactors. – M.: Energoatomizdat, 1988. – 123 p.

7. . Stolyarevsky A. Ya. Methane-hydrogen fuel // Energy: economics, technology, ecology. – 2015. – No. 3. – P. 16-23.

8. . Kazaryan V. A., Tsybulsky P. G., PonomarevStepnoy N. N., Stolyarevsky A. Ya. Technology of adiabatic conversion of hydrocarbons for the production of energy resources. On Sat. reports at the XIX International Congress «New technologies of the gas, oil industry, energy and communications», Ufa-2009. Academy of Technological Sciences. 2010.

9. . Stolyarevsky A. Ya. Technology of production of hydrogen-methane mixture for motor vehicles // Science and technology in the gas industry. No. 3, 2008. – P. 73-80.

10. . Ponomarev-Stepnoy N. N., Stolyarevsky A. Ya. Main aspects of the strategy for the development of hydrogen energy based on nuclear energy sources. Report at the IAEA International Conference «50 Years of Nuclear Energy – the Next 50 Years». Moscow-Obninsk, June 27 – July 2, 2004

11. . N. Z. Muradov and T. N. Veziroğlu, «From hydrocarbon to hydrogen-carbon to hydrogen economy». International Journal of Hydrogen Energy, vol. 30, no. 3, pp. 225-237, 2005.

12. . J. D. Holladay, J. Hu, D. L. King, and Y. Wang, «An overview of hydrogen production technologies». Catalysis Today, vol. 139, no. 4, pp. 244-260, 2009.

13. . J. M. Ogden, M. M. Steinbugler, and T. G. Kreutz «Comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: im-plications for vehicle design and infrastructure development». Journal of Power Sources, vol. 79, no. 2, pp. 143-168, 1999.

14. . M. Onozaki, K. Watanabe, T. Hashimoto, H. Saegusa, and Y. Katayama. «Hydrogen pro-duction by the partial oxidation and steam re-forming of tar from hot coke oven gas». Fuel, vol. 85, no. 2, pp. 143-149, 2006.

15. . Blue Hydrogen Production and Markets 2023-2033: Technologies, Forecasts, Players. ChingisIdrissov. IDTechEx. https://www.idtechex.com/en/research-report/blue-hydrogen-production-andmarkets-2023-2033-technologies-forecasts-players/922.

16. . J. R. Rostrup-Nielsen. «Conversion of hydrocarbons and alcohols for fuel cells». Physi-cal Chemistry Chemical Physics, vol. 3, no. 3, pp. 283-288, 2001.

17. . H. Song, L. Zhang, R. B. Watson, D. Braden, and U. S. Ozkan. «Investigation of bio-ethanol steam reforming over cobalt-based catalysts». Catalysis Today, vol. 129, no. 3-4, pp. 346-354, 2007.

18. . R. Farrauto, S. Hwang, L. Shore et al. «New material needs for hydrocarbon fuel pro-cessing: generating hydrogen for the PEM fuel cell». Annual Review of Materials Research, vol. 33, pp. 1-27, 2003.

19. . C. Song. «Fuel processing for low-temperature and high-temperature fuel cells: challenges, and opportunities for sustainable development in the 21st century». Catalysis To-day, vol. 77, no. 1-2, pp. 17-49, 2002.

20. . J. Rostrup-Nielsen. «Hydrogen generation by catalysis» in Encyclopedia of Catalysis, I. T. Horvath, Ed., Wiley Interscience, 2003.

21. . Y. Shirasaki, T. Tsuneki, Y. Ota et al. «Development of membrane reformer system for highly efficient hydrogen production from natural gas». International Journal of Hydrogen Energy, vol. 34, no. 10, pp. 4482-4487, 2009.

22. . B. Sorensen, Hydrogen and Fuel Cells, Academic Press, 2011.

23. . K. L. Hohn and L. D. Schmidt. «Partial oxidation of methane to syngas at high space velocities over Rhcoated spheres». Applied Catalysis A, vol. 211, no. 1, pp. 53-68, 2001.

24. . J. J. Krummenacher, K. N. West, and L. D. Schmidt. «Catalytic partial oxidation of higher hydrocarbons at millisecond contact times: decane, hexadecane, and diesel fuel». Journal of Catalysis, vol. 215, no. 2, pp. 332-343, 2003.

25. . K. Aasberg-Petersen, J. H. Bak Hansen, T. S. Christensen et al. «Technologies for large-scale gas conversion». Applied Catalysis A, vol. 221, no. 1-2, pp. 379-387, 2001.

26. . L. Pino, V. Recupero, S. Beninati, A. K. Shukla, M. S. Hegde, and P. Bera. «Catalytic partial-oxidation of methane on a ceria-supported platinum catalyst for application in fuel cell electric vehicles». Applied Catalysis A, vol. 225, no. 1-2, pp. 63–75, 2002.

27. . Hydrogen Insights 2023. An update on the state of the global hydrogen economy, with a deep dive into North America. May 2023. https://hydrogencouncil.com/wp-content/uploads/2023/05/Hydrogen-Insights-2023. pdf.

28. . J. D. Holladay, Y. Wang, and E. Jones, «Review of developments in portable hydrogen production using microreactor technology». Chemical Reviews, vol. 104, no. 10, pp. 4767-4790, 2004.

29. . T. A. Semelsberger, L. F. Brown, R. L. Borup, and M. A. Inbody. «Equilibrium products from autothermal processes for generating hydrogenrich fuel-cell feeds». International Journal of Hydrogen Energy, vol. 29, no. 10, pp. 1047-1064, 2004.

30. . F. Joensen and J. R. Rostrup-Nielsen, «Conversion of hydrocarbons and alcohols for fuel cells». Journal of Power Sources, vol. 105, no. 2, pp. 195-201, 2002.

31. . D. J. Wilhelm, D. R. Simbeck, A. D. Karp, and R. L. Dickenson. «Syngas production for gas-to-liquids applications: technologies, issues and outlook». Fuel Processing Technology, vol. 71, no. 1-3, pp. 139-148, 2001.

32. . S. Ayabe, H. Omoto, T. Utaka et al. «Catalytic autothermal reforming of methane and propane over supported metal catalysts». Ap-plied Catalysis A, vol. 241, no. 1-2, pp. 261-269, 2003.

33. . C. Rhodes, B. P. Williams, F. King, and G. J. Hutchings.«Promotion of Fe3O4/Cr2O3 high temperature water gas shift catalyst». Catalysis Communications, vol. 3, no. 8, pp. 381-384, 2002.

34. . Global Hydrogen Review 2023. Septem-ber 2023. https://www.iea.org/reports/global-hydrogenreview-2023.

35. . P. Pietrogrande and M. Bezzeccheri. «Fuel processing» in Fuel Cell Systems, L. J. M. J. Blomen and M. N. Mugerwa, Eds., pp. 121-156, Plenum Press, New York, NY, USA, 1993.

36. . M. W. Twigg, Catalyst Handbook, Wolfe Publishing, London, UK, 1989.

37. . Basma, H., & Rodríguez, F. (2021). Race to zero: How manufacturers are positioned for zeroemission commercial trucks and buses in Europe. International Council on Clean Trans-portation. https://theicct.org/publications/race-to-zero-ze-hdv-eu-dec21

38. . L. Bromberg, D. R. Cohn, and A. Rabinovich. «Plasma reformer-fuel cell system for decentralized power applications». Interna-tional Journal of Hydrogen Energy, vol. 22, no. 1, pp. 83-94, 1997.

39. . L. Bromberg, D. R. Cohn, A. Rabinovich, and N. Alexeev. «Plasma catalytic reforming of methane». International Journal of Hydrogen Energy, vol. 24, no. 12, pp. 1131-1137, 1999.

40. . T. Hammer, T. Kappes, and M. Baldauf. «Plasma catalytic hybrid processes: gas dis-charge initiation and plasma activation of cata-lytic processes». Catalysis Today, vol. 89, no. 1-2, pp. 5-14, 2004.

41. . T. Paulmier and L. Fulcheri. «Use of nonthermal plasma for hydrocarbon reforming». Chemical Engineering Journal, vol. 106, no. 1, pp. 59-71, 2005.

42. . L. Bromberg, D. R. Cohn, A. Rabinovich, C. O’Brien, and S. Hochgreb. «Plasma reform-ing of methane». Energy and Fuels, vol.12, no. 1, pp. 11-18, 1998.

43. . M. F. Demirbas. «Hydrogen from various biomass species via pyrolysis and steam gasification processes». Energy Sources A, vol. 28, no. 3, pp. 245-252, 2006.

44. . M. Asadullah, S. I. Ito, K. Kunimori, M. Yamada, and K. Tomishige. «Energy efficient production of hydrogen and syngas from bio-mass: development of low-temperature catalytic process for cellulose gasification». Environmental Science and Technology, vol. 36, no. 20, pp. 4476-4481, 2002.

45. . G. Weber, Q. Fu, and H. Wu. «Energy efficiency of an integrated process based on gasi-fication for hydrogen production from bio-mass». Developments in Chemical Engineering and Mineral Processing, vol. 14, no. 1-2, pp. 33-49, 2006.

46. . M. Ni, D. Y. C. Leung, M. K. H. Leung, and K. Sumathy. «An overview of hydrogen production from biomass». Fuel Processing Technology, vol. 87, no. 5, pp. 461-472, 2006.

47. . N. Muradov. «Emission-free fuel reform-ers for mobile and portable fuel cell applica-tions». Journal of Power Sources, vol. 118, no. 1-2, pp. 320-324, 2003.

48. . Meszler, D., Delgado, O., Rodriguez, F., & Muncrief, R. (2018). European Heavy-Duty Vehicles –Cost effectiveness of fuel efficiency technologies for long-haul tractor-trailers in the 2025-2030 timeframe. International Council on Clean Transporta-tion.http://theicct.org/publications/cost-effectiveness-of-fuelefficiency-tech-tractor-trailers.

49. . F. G. Zhagfarov, N. A. Grigor’Eva, and A. L. Lapidus. «New catalysts of hydrocarbon py-rolysis». Chemistry and Technology of Fuels and Oils, vol. 41, no. 2, pp. 141-145, 2005.

50. . J. Turner, G. Sverdrup, M. K. Mann et al. «Renewable hydrogen production». Interna-tional Journal of Energy Research, vol. 32, no. 5, pp. 379-407, 2008.

51. . S. A. Grigoriev, V. I. Porembsky, and V. N. Fateev. «Pure hydrogen production by PEM electrolysis for hydrogen energy». International Journal of Hydrogen Energy, vol. 31, no. 2, pp. 171-175, 2006.

52. . Ogden J., Dennis E., Steinbugler M., Strohbehn J. Hydrogen Energy Systems Studies. Final Report. Princeton University. 1995.

53. . J. E. Funk. «Thermochemical hydrogen production: past and present». International Journal of Hydrogen Energy, vol. 26, no. 3, pp. 185-190, 2001.

54. . M. A. Lewis, M. Serban, and J. K. Basco. «Hydrogen production at < 550 °C using a low temperature thermochemical cycle» in Proceed-ings of the Atoms for Prosperity: Updating Ei-senhower’s Global Vision for Nuclear Energy (Global ‘03), pp. 1492-1498, Chicago, III, USA, November 2003.


Review

For citations:


Stolyarevsky A.Ya. Methane-hydrogen transition to hydrogen economy. Alternative Energy and Ecology (ISJAEE). 2024;(1):87-101. (In Russ.) https://doi.org/10.15518/isjaee.2024.01.087-101

Views: 80


ISSN 1608-8298 (Print)