

Защита витковой изоляции трансформаторов и ветрогенераторов от высокочастотных перенапряжений
https://doi.org/10.15518/isjaee.2024.01.119-132
Аннотация
Работа посвящена разработке устройства для защиты витковой изоляции трансформаторного оборудования и ветрогенераторов. С целью повышения надёжности эксплуатации энергетических систем, установок получения возобновляемой энергии и устройств хранения энергии. В работе представлены результаты экспериментальных исследований параметров прототипа частотнозависимого устройства. А также оценка эффективности подавления предложенным устройством высокочастотных импульсных перенапряжений. Показаны результаты четырёх измерений, результаты которых сравнивались между собой и результатами ранее проведённых компьютерных моделирований. Показана высокая эффективность предлагаемого устройства в воздействии на крутизну и амплитуду коротких высокочастотных импульсов перенапряжений. Показано, что параметры, предложенные ранее при моделировании, позволяют эффективно использовать устройство. Приведён краткий анализ альтернативных способов и средств защиты, а также рассмотрены перспективы применения устройства в качестве защитного оборудования для ветроэлектростанций.
Ключевые слова
Об авторах
С. М. КоробейниковРоссия
Коробейников Сергей Миронович - доктор физико-математических наук, заведующий кафедрой «Безопасности труда»,
Новосибирск
В. А. Ломан
Россия
Ломан Валентин Алексеевич - кандидат технических наук, доцент кафедры «Безопасности труда»,
Новосибирск
А. В. Ридель
Россия
Ридель Александр Викторович - кандидат технических наук, доцент кафедры «Безопасности труда»,
Новосибирск
А. Л. Бычков
Россия
Бычков Александр Леонидович - кандидат технических наук, Старший преподаватель кафедры «Безопасности труда»,
Новосибирск
Список литературы
1. . Zhiznin S. Z., Vassilev S., Gusev A.L. Economics of secondary renewable energy sources with hydrogen generation // International Journal of Hydrogen Energy Volume 44, Issue 23, 2019, P. 11385-1139, https://doi.org/10.1016/j.ijhydene.2019.03.072.
2. . Ajanovic A., Sayer M., Haas R. The economics and the environmental benignity of different colors of hydrogen // International Journal of Hydrogen Energy, Volume 47, Issue 57, 2022, Pages 24136-24154, https://doi.org/10.1016/j.ijhydene.2022.02.094.
3. . Temiz M., Dincer I. Development of solar and wind based hydrogen energy systems for sustainable communities // Energy Conversion and Management, Volume 269, 2022, 116090, https://doi.org/10.1016/j.enconman.2022.116090.
4. . Hasan M. M., Genç G. Techno-economic analysis of solar/wind power based hydrogen production // Fuel, Volume 324, Part A, 2022, 124564, https://doi.org/10.1016/j.fuel.2022.124564.
5. . Durakovic G., Crespo del Granado P., Tomasgard A. Powering Europe with North Sea offshore wind: The impact of hydrogen investments on grid infrastructure and power prices // Energy, Volume 263, Part A, 2023, 125654, https://doi.org/10.1016/j.energy.2022.125654.
6. . Posso F., Galeano M., Baranda C., Franco D., Rincón A., Zambrano J., Cavaliero C., Lópes D. Towards the Hydrogen Economy in Paraguay: Green hydrogen production potential and end-uses // International Journal of Hydrogen Energy, Volume 47, Issue 70, 2022, P. 30027-30049, https://doi.org/10.1016/j.ijhydene.2022.05.217.
7. . Nasser M., Megahed T. F., Ookawara S., Hassan H., Performance evaluation of PV panels/wind turbines hybrid system for green hydrogen generation and storage: Energy, exergy, economic, and enviroeconomic // Energy Conversion and Management, Volume 267, 2022, 115870, https://doi.org/10.1016/j.enconman.2022.115870.
8. . Kotowicz J., Jurczyk M., Węcel D. The possibilities of cooperation between a hydrogen generator and a wind farm // International Journal of Hydrogen Energy, Volume 46, Issue 10, 2021, P. 7047-7059, doi.org/10.1016/j.ijhydene.2020.11.246.
9. . Hassan Q., Sameen A. Z., Salman H. M., Jaszczur M., Large-scale green hydrogen production via alkaline water electrolysis using solar and wind energy // International Journal of Hydrogen Energy, 2023, doi.org/10.1016/j.ijhydene.2023.05.126.
10. . Messaoudi D., Settou N., Allouhi A. Geographical, technical, economic, and environmental potential for wind to hydrogen production in Algeria: GIS-based approach // International Journal of Hydrogen Energy, 2023, doi.org/10.1016/j.ijhydene.2023.07.263.
11. . Smugala D., Piasecki W., Ostrogorska M., Florkowski M., Fulczyk M., Granhaug O. Wind Turbine Transformers Protection Method Against HighFrequency Transients // IEEE Transactions on Power Delivery, Volume 30, no. 2, April 2015, P. 853-860, doi: 10.1109/TPWRD.2014.2343261.
12. . Xin Y. L., Tang W. H., Luan L., Chen G. Y., Wu H. Overvoltage protection on high-frequency switching transients in large offshore wind farms // 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 2016, pp. 1-5, doi: 10.1109/PESGM.2016.7741642.
13. . Zhu H., Chen Q., Li H., Tong Y., Han L., Jiao Y. Analyses on an electronic voltage transformer’s failure by its resonance with very fast transient overvoltage and suppression // High Voltage. 1–13 (2023). https://doi.org/10.1049/hve2.12370
14. . Wang J., Mi, Li X., Zhang Cai. Effects of Surge Protective Devices on Overhead Power Line Induced Voltage from Natural Lightning // IEEE Transactions on Electromagnetic Compatibility. – 2013. – Vol. 55. № 6. – P. 1201-1209
15. . Soares A., Schroeder M. A., Visacro S. Transient voltages in transmission lines caused by direct lightning strikes // IEEE Transactions on Power Delivery. – 2005. – Vol. 20. № 2. – P. 1447-1452.
16. . Mahmood F., Lehtonen M., Nehmdoh S. A. Probabilistic Risk Assessment of MV Insulator Flashover Under Combined AC and Lightning-Induced Overvoltages // IEEE Transactions on Power Delivery. – 2015. – Vol. 30. № 4. – P. 1880-1888
17. . Yuan M., Zou L., Li Z., Pang L., Zhao T., Li Z., Zhou J., Xiao P., Akram S., Wangl Z. A review on factors that affect surface charge accumulation and charge-induced surface flashover // Nanotechnology, Volume 32, Number 2 6 (2021) doi:10.1088/1361-6528/abe9e3
18. . Florkowski, M., Furgał, J., Pajak, P. Risks of transformers from switching overvoltages in electrical power systems // Energies – 2010. – № 86. – Р. 245-248.
19. . Tastet J., Angays P. Safe Implementation of HV Vacuum Switches in Oil & Gas Installations // 2007 4th European Conference on Electrical and Instrumentation Applications in the Petroleum & Chemical Industry – 2007. – P. 1-7.
20. . Shipp D. D., Dionise T. J., Lorch V., MacFarlane B. G. Transformer Failure Due to Circuit-BreakerInduced Switching Transients // IEEE Transactions on Industry Applications – 2011. – Vol. 47. № 2. – P. 707-718.;
21. . Banda C. A., Van Coller J. M. Resonant overvoltages in wind turbine transformers // 2015 IEEE Eindhoven PowerTech, Eindhoven, Netherlands, 2015, P. 1-6, doi: 10.1109/PTC.2015.7232317.
22. . Soloot A. H., Høidalen H. K. Gustavsen B. Influence of the winding design of wind turbine transformers for resonant overvoltage vulnerability // IEEE Transactions on Dielectrics and Electrical Insulation, vol. 22, no. 2, April 2015, P. 1250-1257, doi: 10.1109/TDEI.2015.7076828.
23. . Nasiri M. J., Homaee O., Jasinski M., Gholami A., Leonowicz Z. Lightning Transients in Wind Turbines: A Comparative Study of Two Tower/Blade Models // 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Madrid, Spain, 2023, P. 1-4, doi: 10.1109/EEEIC/ICPSEurope57605.2023.10194606.
24. . Zhang T., Sun L. X., Zhang Y., Sun P. Simulation of switching overvoltage of step-up transformers in wind farms // 2013 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, Beijing, China, 2013, P. 430-431, doi: 10.1109/ASEMD.2013.6780812.
25. . Cervantes M., Kocar I., Montenegro A., Goldsworthy D. L., Tobin T., Mahseredjian J., Ramos R., Martí J. R., Noda T., Ametani A., Martin C. Simulation of Switching Overvoltages and Validation With Field Tests // IEEE Transactions on Power Delivery. – 2018. – Vol. 33. № 6. – P. 2884-2893.
26. . Smugała, D., Piasecki, W., Ostrogórska, M., Florkowski, M., Fulczyk, M., Granhaug, O. New approach to protecting transformers against high frequency transients–wind turbine case study // PrzeglądElektrotech. 2013, No. 89, P. 186–190.
27. . Smugała D., Piasecki W. , Ostrogórska M., Florkowski M., Fulczyk M., Kłys P. Distribution transformers protection against High Frequency Switching Transients // PrzeglądElektrotechni, R. 88 NR 5a/2012 P. 296-300.
28. . Korobeynikov S. M., Krivosheev S. I., Magazinov S. G., Loman V. A., Ilushov N. Y. Suppression of Incoming High-Frequency Overvoltage in Transformer Coils // IEEE Transactions on Power Delivery, vol. 36, no. 5, Oct. 2021, P. 2988-2994, doi: 10.1109/TPWRD.2020.3031592.
29. . Патент № 214353 РФ Устройство для защиты от высокочастотных перенапряжений / Коробейников С. М., Ридель А. В., Бычков А. Л., Ломан В. А. Патентообладатель ООО «Электрозащитные решения». Дата регистрации 25.10.2022 Бюл. № 30 27.06.2022.
30. . Emelyanova O. O., Loman V. A., Korobeynikov S. M., Lightning Overvoltages Suppression for the 35-kV Cable Section Insulation with the FrequencyDependent Device // Actual problems of electronic instrument engineering (APEIE–2021) : proc. of the 15 intern. sci. and techn. conf., Novosibirsk, 19–21 Nov. 2021. – Novosibirsk : Publ. NSTU, 2021. – P. 212-215. DOI 10.1109/APEIE52976.2021.9647458.
31. . Nakamura N., Takada H. Kato J., Study on a High-Performance Fuse against Surge Current // 2018 34th International Conference on Lightning Protection (ICLP), Rzeszow, Poland, 2018, P. 1-5, doi: 10.1109/ICLP.2018.8503270.
32. . Ibrahim A. I., Dommel, H. W. A Knowledge Base for Switching Surge Transients // International Conference on Power Systems Transients (IPST’05) in Montreal, Canada on June 19-23, 2005/ https://www.ipstconf.org/papers/Proc_IPST2005/05IPST050.pdf
33. . Okabe S., Yuasa S., Kaneko S. Evaluation of Breakdown Characteristics of Gas Insulated Switchgears for Non-Standard Lightning Impulse Waveforms - Breakdown Characteristics for Non-Standard Lightning Impulse Waveforms Associated with Lightning Surges // IEEE Transactions on Dielectrics and Electrical Insulation, vol. 15, no. 2, April 2008, P. 407-415, doi: 10.1109/TDEI.2008.4483459.
34. . Liljestrand L., Lindell E. Efficiency of surge arresters as protective devices against circuit-breakerinduced overvoltages // IEEE Transactions on power delivery. – 2016. – Vol. 31. №. 4. – P. 1562-1570.
35. . Costea M., Nicoara B. The Effects of Lightning Induced Overvoltages on Low Voltage Power Networks // IEEE Bucharest Power Tech Conference, June 28th - July 2nd. – Bucharest, Romania. – 2009. – P. 1-6.
36. . Aravanis T. I., Pyrgioti E. C., Gonos I. F. Lightning-induced Overvoltages in the Hellenic Electricity Distribution Network // 2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE Lightning-induced Overvoltages in the Hellenic Electricity Distribution Network). – Chengdu, China. – 2016. – P. 1-4.
37. . Cao W., Wan S., Gu S., Xu H., Chen J., Wang J., Lu L. Development and application of lightning flashover limited equipment for 220 kV AC transmission line // The Journal of Engineering. – 2019. – Vol. 2019. Issue 16. – P. 802-805.
38. . Бердников Р. Н., Гайворонский А. С., Горюшин Ю. А., Дементьев Ю. А., Тимофеев Д. Г., Шевцов И. В. ОАО «ФСК ЕЭС», ОАО «НЦ ФСК ЕЭС» Устройство грозозащиты высоковольтной воздушнойлинии, монтируемое на промежуточной опоре и высоковольтная воздушная линия, снабженная таким устройством. Патент № 2456733 РФ. – № 2011121247/07 Заявл. 26.05.2011; Опубл. 20.07.2012. Бюл. № 20.
39. . Пильщиков В. Е., Гангрский М. Ю., Красавина М. А. ЗАО «Завод энергозащитных устройств» Ограничитель перенапряжения, встроенный в корпус изолятора. Патент № 2259609 РФ. – № 2004112571/09 Заявл. 20.04.2004; Опубл. 27.08.2005. Бюл. № 24.
40. . Li Q., Wu M. Simulation Method for the Applications of Ferromagnetic Materials in Suppressing High-Frequency Transients within GIS // IEEE Transactions on Power delivery. – 2007. – Vol. 22. № 3. – P. 1628-1632.
41. . Протокол технического совета АО «Тюменьэнерго» от 12 декабря 2018 года Секция № 1 Композитные опоры ВЛ 35-110 кВ, Частотозависимый резистор. Сургут. 2018.
Рецензия
Для цитирования:
Коробейников С.М., Ломан В.А., Ридель А.В., Бычков А.Л. Защита витковой изоляции трансформаторов и ветрогенераторов от высокочастотных перенапряжений. Альтернативная энергетика и экология (ISJAEE). 2024;(1):119-132. https://doi.org/10.15518/isjaee.2024.01.119-132
For citation:
Korobeynikov S.M., Loman V.A., Ridel A.V., Bychkov A.L. Рrotection the turn insulation of transformers and wind generators from high-frequency overvoltages. Alternative Energy and Ecology (ISJAEE). 2024;(1):119-132. https://doi.org/10.15518/isjaee.2024.01.119-132