Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Рrotection the turn insulation of transformers and wind generators from high-frequency overvoltages

https://doi.org/10.15518/isjaee.2024.01.119-132

Abstract

The work is devoted to the development of a device for protecting the turn insulation of transformer equipment and wind generators. In order to increase the reliability of operation of energy systems, renewable energy installations and energy storage devices. The paper presents the results of experimental studies of the parameters of a prototype frequency-dependent device. As well as an assessment of the suppression efficiency of the proposed device for high frequency pulse overvoltages. The results of four measurements are shown, the results of which were compared with each other and the results of previously conducted computer simulations. The proposed device is shown to be highly effective in influencing the slope and amplitude of short high-frequency overvoltage pulses. It is shown that the parameters proposed earlier in the simulation allow the device to be used effectively. A brief analysis of alternative methods and means of protection is provided, and the prospects for using the device as protective equipment for wind power plants are also considered.

About the Authors

S. M. Korobeynikov
Novosibirsk State Technical University
Russian Federation

Sergey Korobeynikov - Dr. of Science, Head of the Industrial Safety Department,

Novosibirsk



V. A. Loman
Novosibirsk State Technical University
Russian Federation

Loman Valentin - Ph.D, Associate Professor of the Department of Industrial Safety,

Novosibirsk



A. V. Ridel
Novosibirsk State Technical University
Russian Federation

Ridel Alexander - Ph.D, Associate Professor of the Department of Industrial Safety,

Novosibirsk



A. L. Bychkov
Novosibirsk State Technical University, Novosibirsk
Russian Federation

Bychkov Alexander - Ph.D, Senior Lecturer of the Department of the Department of Industrial Safety,

Novosibirsk 



References

1. . Zhiznin S. Z., Vassilev S., Gusev A. L. Economics of secondary renewable energy sources with hydrogen generation // International Journal of Hydrogen Energy Volume 44, Issue 23, 2019, P. 11385-1139, https://doi.org/10.1016/j.ijhydene.2019.03.072.

2. . Ajanovic A., Sayer M., Haas R., The economics and the environmental benefit of different colors of hydrogen // International Journal of Hydrogen Energy, Volume 47, Issue 57, 2022, Pages 24136-24154, https://doi.org/10.1016/j.ijhydene.2022.02.094.

3. . Temiz M., Dincer I., Development of solar and wind based hydrogen energy systems for sustainable communities // Energy Conversion and Management, Volume 269, 2022, 116090, https://doi.org/10.1016/j.enconman.2022.116090.

4. . Hasan M. M., Genç G., Techno-economic analysis of solar/wind power based hydrogen production // Fuel, Volume 324, Part A, 2022, 124564, https://doi.org/10.1016/j.fuel.2022.124564.

5. . Durakovic G., Crespo del Granado P., Tomasgard A., Powering Europe with North Sea offshore wind: The impact of hydrogen investments on grid infrastructure and power prices // Energy, Volume 263, Part A, 2023, 125654, https://doi.org/10.1016/j.energy.2022.125654.

6. . Posso F., Galeano M., Baranda C., Franco D., Rincón A., Zambrano J., Cavaliero C., Lópes D. Towards the Hydrogen Economy in Paraguay: Green hydrogen production potential and end-uses // International Journal of Hydrogen Energy, Volume 47, Issue 70, 2022, P. 30027- 30049, https://doi.org/10.1016/j.ijhydene.2022.05.217.

7. . Nasser M., Megahed T. F., Ookawara S., Hassan H., Performance evaluation of PV panels/wind turbines hybrid system for green hydrogen generation and storage: Energy, exergy, economic, and enviroeconomic // Energy Conversion and Management, Volume 267, 2022, 115870, https://doi.org/10.1016/j.enconman.2022.115870.

8. . Kotowicz J., Jurczyk M., Węcel D. The possibilities of cooperation between a hydrogen generator and a wind farm // International Journal of Hydrogen Energy, Volume 46, Issue 10, 2021, P. 7047-7059, doi.org/10.1016/j.ijhydene.2020.11.246.

9. . Hassan Q., Sameen A. Z., Salman H. M., Jaszczur M. Large-scale green hydrogen production via alkaline water electrolysis using solar and wind energy // International Journal of Hydrogen Energy, 2023, doi.org/10.1016/j.ijhydene.2023.05.126.

10. . Messaoudi D., Settou N., Allouhi A. Geographical, technical, economic, and environmental potential for wind to hydrogen production in Algeria: GIS-based approach // International Journal of Hydrogen Energy, 2023, doi.org/10.1016/j.ijhydene.2023.07.263.

11. . Smugala D., Piasecki W., Ostrogorska M., Florkowski M., Fulczyk M., Granhaug O. Wind Turbine Transformers Protection Method Against High-Frequency Transients // IEEE Transactions on Power Delivery, Volume 30, no. 2, April 2015, pp. 853-860, doi: 10.1109/TPWRD.2014.2343261.

12. . Xin Y. L., Tang W. H., Luan L., Chen G. Y., Wu H. Overvoltage protection on high-frequency switching transients in large offshore wind farms // 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 2016, pp. 1-5, doi: 10.1109/PESGM.2016.7741642.

13. . Zhu H., Chen Q., Li H., Tong Y., Han L., Jiao Y. Analyzes on an electronic voltage transformer’s failure by its resonance with very fast transient overvoltage and suppression // High Voltage. 1–13 (2023). https://doi.org/10.1049/hve2.12370

14. . Wang J., Mi, Li X., Zhang Cai. Effects of Surge Protective Devices on Overhead Power Line Induced Voltage from Natural Lightning // IEEE Transactions on Electromagnetic Compatibility. – 2013. – Vol. 55. No. 6. – P. 1201-1209

15. . Soares A., Schroeder M. A., Visacro S. Transient voltages in transmission lines caused by direct lightning strikes // IEEE Transactions on Power Delivery. – 2005. – Vol. 20. No. 2. – P. 1447-1452.

16. . Mahmood F., Lehtonen M., Nehmdoh S. A. Probabilistic Risk Assessment of MV Insulator Flashover Under Combined AC and Lightning-Induced Overvoltages // IEEE Transactions on Power Delivery. – 2015. – Vol. 30. No. 4. – P. 1880-1888

17. . Yuan M., Zou L., Li Z., Pang L., Zhao T., Li Z., Zhou J., Xiao P., Akram S., Wangl Z. A review on factors that affect surface charge accumulation and charge -induced surface flashover // Nanotechnology, Volume 32, Number 2 6 (2021) doi:10.1088/1361-6528/abe9e3

18. . Florkowski, M., Furgał, J., Pajak, P. Risks of transformers from switching overvoltages in electrical power systems // Energies – 2010. – No. 86. – R. 245-248.

19. . Tastet J., Angays P. Safe Implementation of HV Vacuum Switches in Oil & Gas Installations // 2007 4th European Conference on Electrical and Instrumentation Applications in the Petroleum & Chemical Industry – 2007. – P. 1-7.

20. . Shipp D. D., Dionise T. J., Lorch V., MacFarlane B. G. Transformer Failure Due to Circuit-Breaker-Induced Switching Transients // IEEE Transactions on Industry Applications - 2011. - Vol. 47. No. 2. – P. 707-718.;

21. . Banda C. A., Van Coller J. M. Resonant overvoltages in wind turbine transformers // 2015 IEEE Eindhoven PowerTech, Eindhoven, Netherlands, 2015, P. 1-6, doi: 10.1109/PTC.2015.7232317.

22. . Soloot A. H., Høidalen H. K. Gustavsen B. Influence of the winding design of wind turbine transformers for resonant overvoltage vulnerability // IEEE Transactions on Dielectrics and Electrical Insulation, vol. 22, no. 2, April 2015, P. 1250-1257, doi: 10.1109/TDEI.2015.7076828.

23. . Nasiri M. J., Homaee O., Jasinski M., Gholami A., Leonowicz Z. Lightning Transients in Wind Turbines: A Comparative Study of Two Tower/Blade Models // 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Madrid, Spain, 2023, P. 1-4, doi: 10.1109/EEEIC/ICPSEurope57605.2023.10194606.

24. . Zhang T., Sun L. X., Zhang Y. Sun P. Simulation of switching overvoltage of step-up transformers in wind farms // 2013 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, Beijing, China, 2013, P. 430-431, doi: 10.1109/ASEMD.2013.6780812.

25. . Cervantes M., Kocar I., Montenegro A., Goldsworthy D. L., Tobin T., Mahseredjian J., Ramos R., Martí J. R., Noda T., Ametani A., Martin C.Simulation of Switching Overvoltages and Validation With Field Tests // IEEE Transactions on Power Delivery. – 2018. – Vol. 33. No. 6. – P. 2884-2893.

26. . Smugała, D.; Piasecki, W.; Ostrogórska, M.; Florkowski, M.; Fulczyk, M.; Granhaug, O. New approach to protecting transformers against high frequency transients–wind turbine case study // PrzeglądElektrotech. 2013, No. 89, pp. 186–190.

27. . Smugała D., Piasecki W. , Ostrogórska M., Florkowski M., Fulczyk M., Kłys P. Distribution transformers protection against High Frequency Switching Transients // Przegląd Elektrotechni, R. 88 NR 5a/2012 P. 296-300.

28. . Korobeynikov S. M., Krivosheev S. I., Magazinov S. G., Loman V. A., Ilushov N. Y. Suppression of Incoming High-Frequency Overvoltage in Transformer Coils // IEEE Transactions on Power Delivery, vol. 36, no. 5, Oct. 2021, P. 2988-2994, doi: 10.1109/TPWRD.2020.3031592.

29. . Patent No. 214353 RF Device for protection against high-frequency overvoltages / Korobeinikov S. M., Ridel A. V., Bychkov A. L., Loman V. A. Patent holder of Electrical Protection Solutions LLC. Registration date 10/25/2022 Bulletin.No. 30 06.27.2022.

30. . Emelyanova O. O., Loman V. A., Korobeynikov S. M., Lightning Overvoltages Suppression for the 35-kV Cable Section Insulation with the Frequency-Dependent Device // Actual problems of electronic instrument engineering (APEIE–2021): proc. of the 15 intern. sci. and techn. conf., Novosibirsk, 19–21 Nov. 2021. – Novosibirsk: Publ. NSTU, 2021. – P. 212-215. DOI 10.1109/APEIE52976.2021.9647458.

31. . Nakamura N., Takada H. Kato J., Study on a High-Performance Fuse against Surge Current // 2018 34th International Conference on Lightning Protection (ICLP), Rzeszow, Poland, 2018, P. 1-5, doi: 10.1109/ICLP.2018.8503270.

32. . Ibrahim A. I., Dommel, H. W. A Knowledge Base for Switching Surge Transients // International Conference on Power Systems Transients (IPST’05) in Montreal, Canada on June 19-23, 2005/ https://www.ipstconf.org/papers/Proc_IPST2005/05IPST050.pdf

33. . Okabe S., Yuasa S., Kaneko S. Evaluation of Breakdown Characteristics of Gas Insulated Switchgears for Non-Standard Lightning Impulse Waveforms - Breakdown Characteristics for Non-Standard Lightning Impulse Waveforms Associated with Lightning Surges // IEEE Transactions on Dielectrics and Electrical Insulation, vol. 15, no. 2, April 2008, pp. 407-415, doi: 10.1109/TDEI.2008.4483459.

34. . Liljestrand L., Lindell E. Efficiency of surge arresters as protective devices against circuit-breaker-induced overvoltages // IEEE Transactions on power delivery. – 2016. – Vol. 31. No. 4. – P. 1562-1570.

35. . Costea M., Nicoara B. The Effects of Lightning Induced Overvoltages on Low Voltage Power Networks // IEEE Bucharest Power Tech Conference, June 28th - July 2nd. – Bucharest, Romania. – 2009. – P. 1-6.

36. . Aravanis T. I., Pyrgioti E. C., Gonos I. F. Lightning-induced Overvoltages in the Hellenic Electricity Distribution Network // 2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE Lightning-induced Overvoltages in the Hellenic Electricity Distribution Network). – Chengdu, China. – 2016. – P. 1-4.

37. . Cao W., Wan S., Gu S., Xu H., Chen J., Wang J., Lu L. Development and application of lightning flashover limited equipment for 220 kV AC transmission line // The Journal of Engineering. – 2019. – Vol. 2019. Issue 16. – P. 802-805.

38. . Berdnikov R. N., Gaivoronsky A. S., Goryushin Yu. A., Dementyev Yu. A., Timofeev D. G., Shevtsov I. V. JSC FGC UES, JSC NC FGC UES High-voltage lightning protection device overhead line mounted on an intermediate support and a high-voltage overhead line equipped with such a device. Patent No. 2456733 RF. – No. 2011121247/07 Application. 05/26/2011; Publ. 07/20/2012. Bull. No. 20.

39. . Pilshchikov V. E., Gangrsky M. Yu., Krasavina M. A. ZAO «Energy Protective Devices Plant» Surge limiter built into the insulator housing. Patent No. 2259609 RF. – No. 2004112571/09 Application. 04/20/2004; Publ. 08/27/2005. Bull. No. 24.

40. . Li Q., Wu M. Simulation Method for the Applications of Ferromagnetic Materials in Suppressing High-Frequency Transients within GIS // IEEE Transactions on Power delivery. – 2007. – Vol. 22. No. 3. – P. 1628-1632.

41. . Minutes of the technical council of Tyumenenergo JSC dated December 12, 2018 Section No. 1 Composite supports of 35-110 kV overhead lines, Frequency-dependent resistor. Surgut. 2018.


Review

For citations:


Korobeynikov S.M., Loman V.A., Ridel A.V., Bychkov A.L. Рrotection the turn insulation of transformers and wind generators from high-frequency overvoltages. Alternative Energy and Ecology (ISJAEE). 2024;(1):119-132. https://doi.org/10.15518/isjaee.2024.01.119-132

Views: 82


ISSN 1608-8298 (Print)