Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Study of magnetic vibrations in machines with fractional slot concentrated windings and permanent magnets for hydrogen electric transport

https://doi.org/10.15518/isjaee.2024.01.169-178

Abstract

Current work presents an investigation of the generation of magnetic vibrations in electric machines with fractional slot concentrated windings and permanent magnets, proposed as a traction drive for electric transport, is carried out. The study considers the design of the magnetic system with the location of permanent magnets on the cylindrical surface of the rotor. The analysis is carried out using the method of harmonic components. Expressions describing the creation of radial forces, which are the cause of vibrations, at a smooth non-magnetic gap are obtained. The results obtained in this study can be used in the design of the considered class of traction motors for electric transport.

About the Authors

D. Yu. Babitsky
Novosibirsk State Technical University
Russian Federation

Babitsky Denis Yurievich  - assistant at the Department of Electromechanics,

Karl Marx Avenue, 20, Novosibirsk, 630073



D. M. Toporkov
Novosibirsk State Technical University
Russian Federation

Toporkov Dmitriy Michailovich - Head of the department of Electromechanics,

Karl Marx Avenue, 20, Novosibirsk, 630073



References

1. . European Union. Commission plans legislative framework to ensure the EU meets it target for CO2 emissions for cars. URL: https://ec.europa.eu/commission/presscorner/detail/en/IP_07_155 (access date 20.09.23).

2. . Road map to a US reducing emissions and driving growth across the nation. URL:https://www.fchea.org/us-hydrogen-study (access date 20.09.23).

3. . Greene D. L., Ogden J. M., Lin Z. Challenges in the designing, planning and deployment of hydrogen refueling infrastructure for fuel cell electric vehicles // ETransportation, 2020. vol. 6. p. 100086.

4. . Parreira A., Viveiros C., Fonte P. Hydrogen as the fuel of the future and its application in electric mobility // 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). – IEEE, 2022. – Р. 1-6.

5. . Jahan I., Islam M. A., Farrok O. Hydrogen Fuel Cell Based Low Power DC Motor Driven Energy Efficient Electric Vehicle: A Comparative Analysis // 2022 4th International Conference on Sustainable Technologies for Industry 4.0 (STI). – IEEE, 2022. – P. 1-6.

6. . Ometto A. A novel high efficiency hybrid power unit for hydrogen-fueled city transit bus / Ometto A. [et al.] // 2019 Electric Vehicles International Conference (EV). IEEE, 2019. – Р. 1-5.

7. . D’Ovidio G., Masciovecchio C., Rotondale N. City bus powered by hydrogen fuel cell and flywheel energy storage system //2014 IEEE International Electric Vehicle Conference (IEVC). – IEEE, 2014. – Р. 1-5.

8. . Gusev A. L., Kazaryan M. A. Hydrogen Storage. Bayer Material Science (BMS) & The International Science and Technology Center (ISTC) // Research Conference, 2007. – Р. 40-41.

9. . Gusev A. L., Malozemova E. P., Veziroglu T. N., Hampton M. D. LH2 ultra-long storage technology // Collection of abstracts of the IX International Student Scientific Conference «Polar Lights – 2006». Nuclear Future: Security, Economics and Law, 2006. – Р. 182-184.

10. . Gusev A. L. Electrosorption phenomena in layers of shield-vacuum heat insulation of hydrogen reservoirs // Alternative Energy and Ecology (ISJAEE), 2007, vol. 4.

11. . Gusev A. L., Kazaryan M. A. Hydrogen Storage // International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2007, vol. 4.

12. . Gusev A. L., Kazaryan M. A. Hydrogen Storage. BayerMatarialScience (BMS) & The International Science and Technology Center (ISTC) // Research Conference, 2007. – Р. 40-41.

13. . Gusev A. L. Main environmental problems of the Nizhny Novgorod region and the transition to a hydrogen economy.// International Scientific Journal for Alternative Energy and Ecology, 2006. vol. 1. p. 13-24.

14. . Gusev A. L. Hydrogen for Progress. The Second International Conference Alternative sources of energy for big cities, 2006. – Р. 22.

15. . Frederic A. Lewis. Hydrogen Economy Forum in Russia. Second International Symposium on Safety and Economy of Hydrogen Transport // Platinum Metals Reviev, 2003. – № 47. – Vol. 4.

16. . Nechaev Yu. S., Filippov G. A., Gusev A. L. On the experimental and theoretical basis of developing a super hydrogen carbonaceous adsorbent for fuel-cellpowered vehicles // In: Book of Abstracts of 7th Biennial International Workshop «Fullerenes and Atomic Clusters» (IWAFAC’2005), 2005.

17. . Nechaev Yu. S., Gusev A. L., Gupta B. K., Srivastava O. N., Veziroglu T. N. On the experimental and theoretical basis developing a «super» hydrogen adsorbent // In: Transactions of International conference «Solid State Hydrogen Storage – Materials and Applications», 2005.

18. . Nechaev Yu. S., Filippov G. A., Gusev A. L. On the experimental and theoretical basis of developing a super hydrogen carbonaceous adsorbent for fuel-cell-powered vehicles // In: Book of Abstracts of 7th Biennial International Workshop «Fullerenes and Atomic Clusters» (IWAFAC’2005), 2005.

19. . Nechaev Yu. S., Gusev A. L., Gupta B. K., Srivastava O. N., Veziroglu T. N. On the experimental and theoretical basis developing a «super» hydrogen adsorbent // In: Transactions of International conference «Solid State Hydrogen Storage – Materials and Applications», 2005.

20. . Yu. S. Nechaev, A. L. Gusev, B. K. Gupta, O. N. Srivastava, T. N. Veziroglu. On using graphite nanofibers for hydrogen on-board storage // In: Transactions of International conference «Solid State Hydrogen Storage – Materials and Applications», 2005.

21. . Gusev A. L., Naumchik I. V., Penkov M. M. Increasing the safety of hydrogen systems based on optimal placement of hydrogen detectors in the thermal insulation cavities of containers and pipelines // International scientific journal Alternative energy and ecology, 2008. – Vol. 7. –P. 20-24.

22. . Gusev A. L. Low-temperature sensors and absorbers of hydrogen // International scientific journal for Alternative energy and ecology, 2003. – Vol 1. – P. 110-114.

23. . Shevchenko A. F. Direct-drive electromechanical steering booster for passenger cars/ Shevchenko A. F. [et al.] //Russian Electrical Engineering, 2007. – Vol. 78. – P. 478-480.

24. . Shevchenko A. F. Multipole synchronous machines with fractional q < 1 tooth windings and excitation with permanent magnets // Russian electrical engineering. 2007. – Vol. 78. – №. 9. – P. 451-455.

25. . Shevchenko A. F. Construction and design features of permanent magnet electric motors for general industrial purposes / Shevchenko A. F. [et al.] // Russian Electrical Engineering, 2014. – Vol. 85. – P. 748-751.

26. . Li Y. Noise and vibration characteristics analysis on different structure parameters of permanent magnet synchronous motor / Li Y. [et al.] // 2013 International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2013. – P. 46-49.

27. . Zou J. Analysis of global and local force harmonics and their effects on vibration in permanent magnet synchronous machines / Zou J. [et al.] //IEEE Transactions on energy conversion, 2017. – Vol. 32. – №. 4. – P. 1523-1532.

28. . Chen Y. S., Zhu Z. Q., Howe D. Vibration of PM brushless machines having a fractional number of slots per pole // IEEE Transactions on Magnetics. – 2006. – Vol. 42. – №. 10. – P. 3395-3397.

29. . Xia Z. P. et al. Comparison of radial vibration forces in 10-pole/12-slot fractional slot surface-mounted and interior PM brushless AC machines / Xia Z. P. [et al.] // The XIX International Conference on Electrical Machines-ICEM 2010. IEEE, 2010. – P. 1-6.

30. . Zhu S. Unequal teeth design to reduce electromagnetic vibration in fractional-slot concentratedwindings permanent-magnet machine / Zhu S. [et al.] // Journal of Magnetics. – 2019. – Vol. 24. – №. 4. – P. 657-667.

31. . Shevchenko A. F., Chestyunina T. V. Analysis of magnetomotive forces of fractional-slot windings of electrical machines // Russian Electrical Engineering. – 2009. – Vol. 80. – №. 12. – P. 641-645.

32. . Charih F. Performances comparison of PM machines with different rotor topologies and similar slot and pole numbers / Charih F. [et al.] // International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion. IEEE, 2012. – P. 56-59.

33. . Dajaku G. Novel rotor design with reduced rare-earth material for PM machines / Dajaku G. [et al.] // 2019 IEEE International Electric Machines & Drives Conference (IEMDC). IEEE, 2019. – P. 1-7.

34. . Chau K. T., Chan C. C., Liu C. Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles // IEEE Transactions on industrial electronics. – 2008. – Vol. 55. – №. 6. – P. 2246-2257.

35. . Babitskii D. Y. Methods to improve the harmonic composition of the magnetic field in electric machines with fractional slot winding / Babitskii D. Y. [et al.] // Russian Electrical Engineering. – 2021. – Vol. 92. – №. 6. – P. 320-325.


Review

For citations:


Babitsky D.Yu., Toporkov D.M. Study of magnetic vibrations in machines with fractional slot concentrated windings and permanent magnets for hydrogen electric transport. Alternative Energy and Ecology (ISJAEE). 2024;(1):169-178. (In Russ.) https://doi.org/10.15518/isjaee.2024.01.169-178

Views: 60


ISSN 1608-8298 (Print)