Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Еxperimental study of solar trackingsystems using a hydraulic cylinder with a composite working fluid

https://doi.org/10.15518/isjaee.2024.01.235-244

Abstract

It is known that the greatest influx of solar energy to the surface takes place during the normal incidence of the sun’s rays on it. However, systems for tracking the position of the Sun and the orientation of solar installations (tracking) require electric drives, are very energy-consuming, expensive and unreliable in operation.

The purpose of this research is to develop a power module based on the dialotometric effect in liquids and solids to create a passive solar tracker, as well as to select a liquid and search for effective polymer additives to create composite working fluids in tracking systems.

It has been experimentally shown that pure ethyl alcohol has the greatest effect of volume change in the temperature range of 20 to 80 °C. Other organic liquids (oils, antifreezes) can also be used in passive solar tracking systems. The addition of solid polymer additives to the liquid phase does not increase the effect of volumetric expansion.

It is shown that as a result of heating a liquid in a closed volume of a hydraulic cylinder with a diameter of 20 mm, masses weighing up to 10 kg can be moved.

Based on the research, the concept of the power module of a passive solar tracker is proposed.

About the Authors

P. A. Vyatkin
Ural Federal University named after the first President of Russia B. N. Yeltsin
Russian Federation

Vyatkin Pavel Alekseevich

Yekaterinburg



A. Kh. Mola
Ural Federal University named after the first President of Russia B. N. Yeltsin
Russian Federation

Al-Mohammedawi Ahmed Hussein Mola - postgraduate student,

Yekaterinburg



S. E. Shcheklein
Ural Federal University named after the first President of Russia B. N. Yeltsin
Russian Federation

Shcheklein Sergey Evgenievich - Dr. Techn. Doctor of Medical Sciences, Professor, Head of the Department of Nuclear Power Plants and Renewable Energy Sources; Full member of the International Energy Academy,

Yekaterinburg



Yu. E. Nemikhin
Ural Federal University named after the first President of Russia B. N. Yeltsin
Russian Federation

Nemikhin Yurii Evgenievich - Senior Lecturer, the «Nuclear Power Plants
and Renewable Energy Sources» department,

Yekaterinburg



References

1. . Nemikhin Y. E. et al. Razrabotka i sozdanie sistemy sledovanie za polozheniya solntsem. Technical sciences in the world: from theory to practice. – 2015. P. 35-38. (In Russian)

2. . Obukhov S. G., Plotnikov I. A. Vybor parametrov i analiz effektivnosti primeneniya sistem sledeniya za solnekom. Engineering of Georesources. 2018. T. 329. №. 10, Р. 95-106. (In Russian)

3. . Hafez A. Z., Yousef A. M., Harag N. M. Solar tracking systems: Technologies and trackers drive types– A review. Renewable and Sustainable Energy Reviews. 2018. Т. 91, Р. 754-782.

4. . M. H. Majeed, N. T. Alwan, S. E. Shcheklein, A. V Matveev. Electromechanical solar tracker system for a parabolic dish with CPU water heater, Mater. Today Proc. (2021).

5. . F. S. Atallah, Y. H. H. Mahmood, S. S. Tawfeeq. Fabrication and study of solar panel tracking system, Tikrit J. Pure Sci. 23 (2018) 123–127. https://doi.org/10.25130/tjps.23.2018.017.

6. . Juang J. N., Radharamanan R., Beaver J. A Low Cost Solar Tracker Design for Renewable Energy. Journal of Management & Engineering Integration. 2013. Т. 6. №. 2.

7. . N. T. Alwan, S. E. Shcheklein, O. M. Ali. Materials Today : Proceedings Experimental analysis of thermal performance for flat plate solar water collector in the climate conditions of Yekaterinburg, Russia, Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2020.12.263.

8. . N. T. Alwan, S. E. Shcheklein, O. M. Ali. Experimental analysis of thermal performance for flat plate solar water collector in the climate conditions of Yekaterinburg, Russia, Mater. Today Proc. 42 (2021) 2076–2083. https://doi.org/10.1016/j.matpr.2020.12.263.

9. . N. T. Alwan, M. H. Majeed, I. M. Khudhur, S. E. Shcheklein, O. M. Ali, S. J. Yaqoob, R. Alayi. Assessment of the performance of solar water heater : an experimental and theoretical investigation, (2022) 528–539.

10. . N. T. Alwan, H. M. Milia, S. E. Shcheklein, A. V. Matveev. Dual axis solar tracking system for a parabolic dish CPU water heater, J. Phys. Conf. Ser. 2119 (2021). https://doi.org/10.1088/1742-6596/2119/1/012098.

11. . A. Ponniran, A. Hashim, A. Joret. A Design of Low Power Single Axis Solar Tracking System Regardless of Motor Speed, Int. J. Integr. Eng. 3 (2011) 5–9.

12. . S. Venkatesh Kumar, C. Kathirvel, P. Deepa, R. Mohan Kumar. Design and Implementation of IoT based Dual Axis Solar Tracking System, Proc. – 2023 3-rd Int. Conf. Smart Data Intell. ICSMDI 2023. 5 (2023), Р. 542–545. https://doi.org/10.1109/ICSMDI57622.2023.00102.

13. . N. T. Alwan, A. S. Ahmed, M. H. Majeed, S. E. Shcheklein, S. J. Yaqoob, A. Nayyar, Y. Nam, M. Abouhawwash, Enhancement of the Evaporation and Condensation Processes of a Solar Still with an Ultrasound Cotton Tent and a Thermoelectric Cooling Chamber, Electron. 11 (2022). https://doi.org/10.3390/electronics11020284.

14. N. T. Alwan, S. E. Shcheklein, O. M. Ali. Case Studies in Thermal Engineering Experimental investigation of modified solar still integrated with solar collector, Case Stud. Therm. Eng. 19 (2020) 100614. https://doi.org/10.1016/j.csite.2020.100614.

15. N. T. Alwan, S. E. Shcheklein, O. M. Ali. Experimental investigations of single-slope solar still integrated with a hollow rotating cylinder, in: IOP Conf. Ser. Mater. Sci. Eng., Institute of Physics Publishing, 2020. https://doi.org/10.1088/1757-899X/745/1/012063.

16. . Shcheklein S. E., Nemikhin Y. E., Nemkov D. A. Revisiting optimization of 2D tracker application in solar energy. 2018. 17th International Ural Conference on AC Electric Drives (ACED). IEEE, 2018. С.1-4.

17. . Madala S., Boehm R. F. A review of nonimaging solar concentrators for stationary and passive tracking applications. Renewable and Sustainable Energy Reviews. 2017. Т. 71. С. 309-322.

18. . León N., García H., Ramírez C. Semi-passive solar tracking concentrator. Energy Procedia. 2014. Т. 57. Р. 275-284.

19. . Pe´rez Sa´nchez M. M., Balam Tamayo D., Cruz Estrada R. H. Design and Construction of a Dual Axis Passive Solar Tracker, for Use on Yucata´n. Energy Sustainability. 2011. Т. 54686. Р. 1341-1346.

20. . Natarajan M., Srinivas T. Experimental and simulation studies on a novel gravity based passive tracking system for a linear solar concentrating collector. Renewable Energy. 2017. Т. 105. Р. 312-323.

21. . Couture P. et al. Improving passive solar collector for fiber optic lighting. 2011 IEEE Electrical Power and Energy Conference. IEEE, 2011. Р. 68-73.

22. . Angulo M. et al. Design and Control of a Passive Solar Tracking System Using a Sky Imager. Latin American Symposium on Industrial and Robotic Systems. Cham: Springer International Publishing, 2019. Р. 170-178.

23. . Holambe P. R., Talange D. B., Bhole V. B. Motorless solar tracking system. 2015 International Conference on Energy Systems and Applications. IEEE, 2015. Р. 358-363.

24. . Sharma M., Jilte R. A review on passive methods for thermal performance enhancement in parabolic trough solar collectors // International Journal of Energy Research. 2021. Т. 45. №. 4. Р. 4932-4966.

25. . Viatkin P.A., Salih S.A., Mola A.H., Dubinin A.M., Shcheklein S.E., Nemikhin Y.E. Experimental study of the effect of low-boiling additives on the volume in the gas cylinder of the Stirling engine. International scientific journal for alternative energy and ecology. 2023. № 4 (409). Р. 125-130. (In Russian)

26. . Vargaftik N.B. Handbook on Thermophysical Properties of Gases and Liquids. Moscow, Nauka Publ., 1972, 720 p. (In Russian).

27. . Yumagulova Y. A. Increase in fluid pressure in a closed volume due to thermal expansion during heating through walls. Proceedings of the Institute of Mechanics named after R. R. Mavlyutov of the Ufa Scientific Center of the Russian Academy of Sciences. – 2012. T. 9. №. 1. P. 188-189. (In Russian)

28. . Nigmatulin R. I. Dynamics of multiphase media. Moscow, Nauka Publ., 1987. Part 1. 464 p. (In Russian). Part 2. 360 p. (In Russian).

29. . Starikov E.V., Velkin V.I., Shcheklein S.E. Patent of the Russian Federation for the utility model «Heliotrope» № 47496 dated 05.04.2005 (In Russian).


Review

For citations:


Vyatkin P.A., Mola A.Kh., Shcheklein S.E., Nemikhin Yu.E. Еxperimental study of solar trackingsystems using a hydraulic cylinder with a composite working fluid. Alternative Energy and Ecology (ISJAEE). 2024;(1):235-244. (In Russ.) https://doi.org/10.15518/isjaee.2024.01.235-244

Views: 57


ISSN 1608-8298 (Print)