

Исследование алгоритмов распределения реактивной мощности для оптимизации потерь мощности на гидроэлектростанциях
https://doi.org/10.15518/isjaee.2024.03.012-027
Аннотация
Проблема распределения нагрузки между гидроагрегатами гидроэлектростанций (ГЭС) является актуальной задачей из-за нелинейности характеристик гидротурбины и индивидуальных особенностей энергоблоков, условия эксплуатации которых зачастую различны. Необходимо брать во внимание самые передовые методы оптимизации, учитывающие нелинейность характеристики турбины. Методы также должны учитывать строгие ограничения на условия эксплуатации энергетического оборудования при поиске экстремума целевой функции, указанной в форме равенств и неравенств. При решении вышеупомянутой задачи оптимизации накладываются ограничения на вычислительные мощности автоматизированных систем управления технологическим процессом (АСУ ТП), которые должны работать в режиме реального времени. Для решения задачи оптимизации был проанализирован метод внутренней точки, а метод множителей Лагранжа был модифицирован так, чтобы он мог минимизировать расход турбины и потери активной энергии в обмотках электрогенераторов и трансформаторов. В статье представлены результаты моделирования разработанных алгоритмов оптимизации и результаты натурных испытаний системы автоматического управления выработкой, использующей описанные алгоритмы. Все проведенные испытания показали достаточно высокую эффективность предложенных методов оптимизации в условиях реальной эксплуатации.
Ключевые слова
Об авторах
Ю. В. КазанцевРоссия
Казанцев Юрий Валентинович, к.т.н, доцент
пр. К. Маркса, 20, 630073, Новосибирск, Россия
Д. В. Корнилович
Россия
Корнилович Денис Викторович, аспирант
пр. К. Маркса, 20, 630073, Новосибирск, Россия
А. И. Хальясмаа
Россия
Хальясмаа Александра Ильмаровна, к.т.н, доцент,
Уральский федеральный университет
пр. К. Маркса, 20, 630073, Новосибирск, Россия
А. А. Архипов
Россия
Архипов Александр Андреевич, магистрант
пр. К. Маркса, 20, 630073, Новосибирск, Россия
А. В. Миклухин
Россия
Миклухин Артем Витальевич, магистрант кафедры «Электрические станции»
пр. К. Маркса, 20, 630073, Новосибирск, Россия
Л. Ю. Сергиевичев
Россия
Сергиевичев Лев Юрьевич, студент
пр. К. Маркса, 20, 630073, Новосибирск, Россия
М. В. Цуран
Россия
Цуран Максим Вячеславович, студент
пр. К. Маркса, 20, 630073, Новосибирск, Россия
Список литературы
1. T. Capurso, M. Stefanizzi, M. Torresi, and S. M. Camporeale. «Perspective of the role of hydrogen in the 21st century energy transition». Energy Convers. Manag., vol. 251, no. July 2021, p. 114898, 2022, doi: 10.1016/j.enconman.2021.114898.
2. Calise, F., Cappiello, F.L., Cimmino, L., Dentice d’Accadia, M. & Vicidomini, M. (2023). Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells. Renewable Energy.
3. Henry, A., Mcstay, D., Rooney, D., Robertson, P. & Foley, A. M. (2023). Techno-economic analysis to identify the optimal conditions for green hydrogen production. Energy Conversion and Management.
4. Boscherini, M., Storione, A., Minelli, M., Miccio, F. & Doghieri, F. (2023). New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas. Energies.
5. Ibrayeva A. E. New Trends and Prospects of Hydrogen Energy in the World and in Kazakhstan. Russia & World: Sc. Dialogue. 2023; (3):71-87. (In Russ.) https://doi.org/10.53658/RW2023-3-3(9)-71-87.
6. X. Song, D. Liang, J. Song, G. Xu, Z. Deng and M. Niu. «Problems and Technology Development Trends of Hydrogen Production from Renewable Energy Power Electrolysis - A Review». 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2), Taiyuan, China, 2021, pp. 3879-3882, doi: 10.1109/EI252483.2021.9713350.
7. H. Bai, H. Chen and W. Shi. «Hydrogen Production by Renewable Energy and Future Trend in China». 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2), Chengdu, China, 2022, pp. 676-680, doi: 10.1109/EI256261.2022.10116157.
8. M. Vadaszi, I. Szunyog and A. B. Szombati-Galyas. «The Role of Hydrogen Connected to the Existing Natural Gas Infrastructure in the Hungarian Energy Transition». 2023 19th International Conference on the European Energy Market (EEM), Lappeenranta, Finland, 2023, pp. 1-5, doi: 10.1109/EEM58374.2023.10161884.
9. M. L. Imeni and M. S. Ghazizadeh. «Pave the Way for Hydrogen-Ready Smart Energy Hubs in Deep Renewable Energy System». 2023 8th International Conference on Technology and Energy Management (ICTEM), Mazandaran, Babol, Iran, Islamic Republic of, 2023, pp. 1-5, doi: 10.1109/ICTEM56862.2023.10083890.
10. S. Li, Y. Si, L. Ma, N. Xin, Z. Wu and M. Gao. «Hydrogen Pricing Method Based on Geographical Distribution Characteristics of Renewable Energy Base». 2022 4th International Conference on Power and Energy Technology (ICPET), Beijing, China, 2022, pp. 671-676, doi: 10.1109/ICPET55165.2022.9918305.
11. A. M. Abomazid, N. A. El-Taweel and H. E. Z. Farag. «Optimal Energy Management of Hydrogen Energy Facility Using Integrated Battery Energy Storage and Solar Photovoltaic Systems» in IEEE Transactions on Sustainable Energy, vol. 13, no. 3, pp. 1457-1468, July 2022, doi: 10.1109/TSTE.2022.3161891.
12. U. Bossel. «Does a Hydrogen Economy Make Sense?» in Proceedings of the IEEE, vol. 94, no. 10, pp. 1826-1837, Oct. 2006, doi: 10.1109/JPROC.2006.883715.
13. G. Li, J. Chen, X. Zheng, C. Xiao and S. Zhou. «Research on Energy Management Strategy of Hydrogen Fuel Cell Vehicles». 2020 Chinese Automation Congress (CAC), Shanghai, China, 2020, pp. 7604-7607, doi: 10.1109/CAC51589.2020.9326669.
14. X. Zhao, Y. Yao, W. Liu, R. Jain and C. Zhao. «A Hydrogen Load Modeling Method for Integrated Hydrogen Energy System Planning». 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 2023, pp. 1-5, doi: 10.1109/ISGT51731.2023.10066443.
15. K. Nigim, J. McQueen and M. Persohn-Costa. «Operational modes of hydrogen energy storage in a micro grid system». 2015 IEEE Electrical Power and Energy Conference (EPEC), London, ON, Canada, 2015, pp. 473-477, doi: 10.1109/EPEC.2015.7379997.
16. Alsalman A. et al. Users, planners, and governments perspectives: A public survey on autonomous vehicles future advancements. Transportation Engineering, 2021, Vol. 3. https://doi.org/10.1016/j.treng.2020.100044.
17. Orlov A. A., Nesterenko G. A., Nesterenko I. S. Overview of perspectives of hydrogen energy. Development of science and practice in a globally changing world under the conditions of risks: Proceedings of the IX International Scientific and Practical Conference, Moscow, 2022: 173-177. Available from: https://doi.org/10.34755/IROK.2022.96.53.039.
18. Mestnikov N. P., Davydov G. I., Al-Zakkar A. M. Hydrogen energy in North and Arctic. Textbook on the discipline «General Energy» and the elective «Fundamentals of Energy Saving and Resource Efficiency in the North». Yakutsk: NEFU Publishing House, 2022. [Electronic resource]. Available from: https://www.elibrary.ru/item.asp?id=48690434.
19. Malykh E. B., Plotnikov V. A. Hydrogen energy: assessment of development prospects. Natural Humanities Research. 2022; 41(3):216-220.
20. L. Wang, Z. Dou, Y. Fan and C. Shi. «Research Front and Trend Analysis of Hydrogen Based Integrated Energy System by CiteSpace». 2021 6th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 2021, pp. 1466-1471, doi: 10.1109/ICPRE52634.2021.9635422.
21. K. K. T. Thanapalan et al. «Progress in the development of renewable hydrogen vehicles, storage, infrastructure in the UK: Hydrogen Centre in its early years of operation». 2011 2nd International Conference on Intelligent Control and Information Processing, Harbin, China, 2011, pp. 738-742, doi: 10.1109/ICICIP.2011.6008347.
22. Z. Xiao, Z. Zhang, Y. Yu and M. Ran. «Analysis of the Development Trend of China’s ElectricityHydrogen Energy Technology Research Based on Bibliometrics». 2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE), Guangzhou, China, 2023, pp. 1511-1516, doi: 10.1109/CEEPE58418.2023.10166348.
23. H. Li, W. Lv, H. Zhao and C. Chen. «A village integrated energy system operating in electricity market and hydrogen market». 2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE), Shenyang, China, 2023, pp. 1-6, doi: 10.1109/ICCSIE55183.2023.10175270.
24. D. Nikolova and D. Stoilov. «Household Energy Efficiency, Diversification of Suppliers and Renewable Hydrogen Production – The Pillars of European Energy Independence». 2022 14th Electrical Engineering Faculty Conference (BulEF), Varna, Bulgaria, 2022, pp. 1-3, doi: 10.1109/BulEF56479.2022.10020199.
25. D. Zhai, J. Zhang, J. Shen and Y. Li. «Optimal Scheduling of Hydrogen Energy Storage IES with Dualfuel Cells». 2022 7th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 2022, pp. 960-966, doi: 10.1109/ICPRE55555.2022.9960655.
26. J. Li and S. Obara. «Study on an energy supply system assuming a pipeline transportation of compressed hydrogen for distributed fuel cell in China». 2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Xi’an, China, 2019, pp. 440-443, doi: 10.1109/PEDG.2019.8807745.
27. Y. Fuyuan, T. Xueqin, X. Tong and W. Xinlei. «Adaptability Assessment of Hydrogen Energy Storage System Based on Proton Exchange Membrane Fuel Cell under the Scenarios of Peaking Shaving and Frequency Regulation». 2021 4th Asia Conference on Energy and Electrical Engineering (ACEEE), Bangkok, Thailand, 2021, pp. 84-90, doi: 10.1109/ACEEE51855.2021.9575144.
28. M. F. Smitkova, F. Janicek and F. Martins. «Hydrogen Economy: Brief Sumarization of Hydrogen Economy». 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), Prague, Czech Republic, 2022, pp. 1-5, doi: 10.1109/ICECET55527.2022.9872907.
29. W. Pirom and A. Srisiriwat. «Electrical EnergyBased Hydrogen Production via PEM Water Electrolysis for Sustainable Energy». 2022 International Electrical Engineering Congress (iEECON), Khon Kaen, Thailand, 2022, pp. 1-4, doi: 10.1109/iEECON53204.2022.9741667.
30. S. Zhang, C. Wang, R. Chen, S. Li, L. Liu and H. Dai. «Optimization of System Configuration and Production Simulation for On-grid Green Hydrogen Projects». 2022 5th International Conference on Renewable Energy and Power Engineering (REPE), Beijing, China, 2022, pp. 397-401, doi: 10.1109/REPE55559.2022.9948766.
31. B. Ma et al. «Development of Hydrogen Energy Storage Industry and Research Progress of Hydrogen Production Technology». 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China, 2021, pp. 1-6, doi: 10.1109/CIEEC50170.2021.9510748.
32. Y. Song et al. «International Hydrogen Energy Policy Summary and Chinese Policy Analysis». 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 2020, pp. 3552-3557, doi: 10.1109/EI250167.2020.9346615.
33. W. Chu and Y. Zhang. «The Efficiency and Economic Feasibility Study on Wind-Hydrogen System». 2020 IEEE Sustainable Power and Energy Conference (iSPEC), Chengdu, China, 2020, pp. 1198-1203, doi: 10.1109/iSPEC50848.2020.9350988.
34. A. Ciancio and L. De Santoli. «Assessing the Levelized Cost of Hydrogen Production in a Renewable Hydrogen Community in South Italy». 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Madrid, Spain, 2023, pp. 1-6, doi: 10.1109/EEEIC/ICPSEurope57605.2023.10194654.
35. S. Zhang, N. Zhang, X. Zhang, Q. Shi, J. Lu and H. Dai. «Study on the Optimization of System Configuration of Green Hydrogen Projects». 2022 7th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 2022, pp. 1260-1263, doi: 10.1109/ICPRE55555.2022.9960360.
36. J. Li and S. Obara. «Study on Hydrogen energy supply system with natural gas pipeline in China». 2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Macao, China, 2019, pp. 1-4, doi: 10.1109/APPEEC45492.2019.8994477.
37. M. Shatnawi, N. A. Qaydi, N. Aljaberi and M. Aljaberi. «Hydrogen-Based Energy Storage Systems: A Review». 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France, 2018, pp. 697-700, doi: 10.1109/ICRERA.2018.8566903.
38. O. V. Marchenko, S. V. Solomin. «Efficiencyof Hybrid Renewable Energy Systems in Russia». International Journal of Renewable Energy Research, vol. 7, pp. 1561-1569, 2017.
39. A. Mas’ud. «An Optimal Sizing Algorithm for a Hybrid Renewable Energy System». International Journal of Renewable Energy Research, vol. 7, pp. 1595-1602, 2017.
40. K. A. Kavadias, D. Apostolou, J. K. Kaldellis. Modelling and optimisation of a hydrogen-based energy storage system in an autonomous electrical network, Applied Energy, 2017.
41. Khalyasmaa, A.; Eroshenko, S.; Bramm, A.; Tran, D.C.; Chakravarthi, T. P.; Hariprakash, R. Strategic planning of renewable energy sources implementation following the country-wide goals of energy sector development. In Proceedings of the International Conference on Smart Technologies in Computing, Electrical and Electronics, Bengaluru, India, 9–10 October 2020; pp. 433-438.
42. Matrenin, P.; Safaraliev, M.; Dmitriev, S.; Kokin, S.; Eshchanov, B.; Rusina, A. Adaptive ensemble models for medium-term forecasting of water inflow when planning electricity generation under climate change. Energy Rep. 2022, 8, 439-447.
43. Mitrofanov, S.; Svetlichnaya, A.; Arestova, A.; Rusina, A. Development of a Software Module of Intra-Plant Optimization for Short-Term Forecasting of Hydropower Plant Operating Conditions. In Proceedings of the IEEE Ural-Siberian Smart Energy Conference (USSEC), Novosibirsk, Russia, 13-15 November 2021.
44. Юрченко С. В. Система группового регулирования активной мощности гидроагрегатов // Современная техника и технологии. 2017. № 3 [Электронный ресурс]. URL: https://technology.snauka.ru/2017/03/12947 (дата обращения: 28.11.2022).
45. D. Tiomo, R. Wamkeue. Dynamic Modeling and Analysis of a Micro Hydro Power Plant for Microgrid Applications // IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), 2019.
46. Kazantsev Y. V., Glazyrin G. V., Khalyasmaa A. I., Shayk S. M., Kuparev M. A. Advanced Algorithms in Automatic Generation Control of Hydroelectric Power Plants. Mathematics. 2022; 10(24):4809. https://doi.org/10.3390/math10244809
47. Mo, W. K.; Chen, Y. P.; Chen, H. Y.; Liu, Y.; Zhang, Y.; Hou, J.; Gao, Q.; Li, C. Analysis and Measures of Ultralow-Frequency Oscillations in a Large-Scale Hydropower Transmission System. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 1077-1085.
48. Cutululis, N. A.; Farahmand, H.; Jaehnert, S.; Detlefsen, N.; Byriel, I.P.; Sørensen, P. E. Hydropower flexibility and transmission expansion to support integration of offshore wind. In Offshore Wind Farms: Technologies, Design and Operation, 1st ed.; Ng, C., Ran, L., Eds.; Woodhead Publishing: Sawston, UK, 2016; pp. 495-523.
49. Farahmand, H.; Jaehnert, S.; Aigner, T.; Huertes-Hernando, D. Nordic hydropower flexibility and transmission expansion to support integration of North European wind power. Wind Energy 2015, 18, 1075-1103.
50. Liu, Q.; Chen, G.; Liu, B.; Zhang, Y.; Liu, C.; Zeng, Z.; Fan, C.; Han, X. Emergency Control Strategy of Ultra-low Frequency Oscillations Based on WAMS. In Proceedings of the IEEE Innovative Smart Grid Technologies – Asia (ISGT Asia), Chengdu, China, 21-24 May 2019; pp. 296-301.
51. Kazantsev, Y. V.; Glazyrin, G. V.; Shayuk, S. M.; Tanfilyeva, D.; Tanfilyev, O.; Fyodorova, V. Hydro unit active power controller minimizing water hammer effect. In Proceedings of the IEEE Ural Smart Energy Conference (USEC), Ekaterinburg, Russia, 13-15 November 2020.
52. Glazyrin, G. V.; Kazantsev, Y. V. Optimal control law for minimization of active power overshoot due to water hammer effect in a hydro unit. In Proceedings of the IEEE 11 International Forum on Strategic Technology (IFOST), Novosibirsk, Russia, 1-3 June 2016; pp. 329-333.
53. Gaidukov, J.; Glazyrin, G.; Glazyrin, V.; Eroshenko, S. Control algorithms and optimization method of the hydroelectric power plant’s microprocessing joint power control. In Proceedings of the 2020 Ural Smart Energy Conference, Ekaterinburg, Russia, 13-15 November 2020; p. 9281275.
54. Rojas, D. G.; Lezama, J. L.; Villa, W. Metaheuristic Techniques Applied to the Optimal Reactive Power Dispatch: A Review. IEEE Lat. Am. Trans. 2016, 14, 2253-2263.
55. S. Shah, H. Sun. VSC Based Active Synchronizer for Generators // IEEE Transactions on Energy Conversion, 2017.
56. Y. Peng. X. Zhang. Optimal Operation of Hydropower Station Using Improved Immune Genetic Algorithm // IEEE d International Conference on Control Science and Systems Engineering, 2017. рр. 408-411.
57. F. Fang, R. Karki. Reliability Implications of Riverflow Variations in Planning Hydropower Systems // IEEE Conference on Technologies for Sustainability, 2018.
58. Campaner, R.; Chiandone, M.; Arcidiacono, V.; Milano, F.; Sulligoi, G. Automatic Voltage Control of a Cluster of Hydro Power Plants to Operate as a Virtual Power Plant. In Proceedings of the International Conference on Environment and Electrical Engineering (EEEIC), Rome, Italy, 10-13 June 2015.
59. Электрическая часть электростанций и подстанций: Справ. материалы для курсового и диплом. проектирования: [Учеб. пособие для электроэнерг. спец. вузов] / И. П. Крючков, Н. Н. Кувшинский, Б. Н. Неклепаев. – 3-е изд., перераб. И доп. – Москва: Энергия, 1978. – 456 с.: ил.; 20 см.
60. Шовкопляс, С. С. Уточнение параметров схемы замещения группы однофазных автотрансформаторов сверхвысокого напряжения / С. С. Шовкопляс, И. А. Морозов, Е. И. Сацук // Кибернетика энергетических систем: Сборник материалов ХL сессии научного семинара по тематике «Диагностика энергооборудования», Новочеркасск, 25-26 сентября 2018 года. – Новочеркасск: Южно-Российский государственный политехнический университет (НПИ) имени М. И. Платова, 2018. – С. 420-424. – EDN NGEKDE.
61. D. Tiomo, R. Wamkeue. Dynamic Modeling and Analysis of a Micro Hydro Power Plant for Microgrid Applications // IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), 2019.
62. Saka, B.; Aibinu, A.M.; Mohammed, Y.S.; Olatunji, D.E. Voltage Stability of the Power System using Genetic Algorithm: A Review. In Proceedings of the 2021 1st International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS), Abuja, Nigeria, 15-16 July 2021.
63. Khalyasmaa, A.; Eroshenko, S.; Arestova, A.; Mitrofanov, S.; Rusina, A.; Kolesnikov, A. Integrating GIS technologies in hydro power plant cascade simulation model. E3S Web Conf. 2020, 191, 02006.
64. Liu, B.; Liao, S.; Cheng, C.; Wu, X. Multi-Core Parallel Genetic Algorithm for the Long-Term Optimal Operation of Large-Scale Hydropower Systems. In Proceedings of the World Environmental and Water Resources Congress, West Palm Beach, FL, USA, 22-26 May 2016; pp. 220-230
65. Robert, Q.; Planque, J. L. Robust Digital Automatic Reactive Power Regulator for Hydro Power Plants. In Proceedings of the 2007 International Conference on Clean Electrical Power, Capri, Italy, 21-23 May 2007; pp. 175-179.
66. «IEEE Draft Guide for Synchronous Generator Modeling Practices and Parameter Verification with Applications in Power System Stability Analyses» in IEEE P1110/D07, July 2019, vol., no., pp. 1-101, 23 July 2019.
67. Q. Zhang, H. Liu, Y. Bai, J. Wang and Y. Qu. «A Novel Analysis Scheme for Static Voltage Stability of Distribution Network with DFIG and SVC». 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 2018, pp. 201-206, doi: 10.1109/IAEAC.2018.8577705.
68. O. V. Gazizova, G. P. Kornilov and A. P. Sokolov. «Development of a System for Regulating the Excitation of Synchronous Generators of Factory Power Plants Connected to a Powerful Energy System». 2022 International Ural Conference on Electrical Power Engineering (Ural-Con), Magnitogorsk, Russian Federation, 2022, pp. 229-233, doi: 10.1109/UralCon54942.2022.9906730.
69. Jie, Z.; Shengchun, L.; Yao, R.; Liang, D.; Zhanshan, Y.; Yongfei, M. Reactive power optimization for AVC system based on decoupled interior point method. In Proceedings of the 2022 14th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Changsha, China, 15-16 January 2022; pp. 131-133.
70. Z. Hu. «Static Voltage Stability Analysis under Different Accident Conditions». 2019 4th International Conference on Intelligent Green Building and Smart Grid (IGBSG), Hubei, China, 2019, pp. 206-209, doi: 10.1109/IGBSG.2019.8886227.
71. Runoff passing simulation model for assessing the efficiency of the water-power conditions of an HPP cascade / A. G. Rusina, A. V. Beloglazov, C. A. Sovban, D. V. Kornilovich. – DOI 10.1007/s10749-023-01477-0. – Text: direct // Power Technology and Engineering. – 2022. – Vol. 56, iss. 1. – P. 88-95.
72. Qin LIU. Emergency Control Strategy of Ultra-low Frequency Oscillations Based on WAMS / Qin LIU, Gang CHEN, Baisi LIU, Yudong ZHANG, Chuyu LIU, Zhuolin ZENG, Chengwei FAN, Xiaoyan HAN // IEEE Innovative Smart Grid Technologies – Asia (ISGT Asia). – 2019. – P. 296-301.
73. Исследование и разработка алгоритмов группового регулирования активной и реактивной мощности ГЭС: диссертация ... кандидата технических наук: 05.14.02 / Казанцев Юрий Валентинович; [Место защиты: ФГБОУ ВО «Новосибирский государственный технический университет»]. – Новосибирск, 2021. – 198 с.: ил.
74. Wang, Y.; Jiang, Q. Reactive power optimization of distribution network based on primal-dual interior point method and simplified branch and bound method. In Proceedings of the 2014 IEEE PES T&D Conference and Exposition, Chicago, IL, USA, 14-17 April 2014.
Рецензия
Для цитирования:
Казанцев Ю.В., Корнилович Д.В., Хальясмаа А.И., Архипов А.А., Миклухин А.В., Сергиевичев Л.Ю., Цуран М.В. Исследование алгоритмов распределения реактивной мощности для оптимизации потерь мощности на гидроэлектростанциях. Альтернативная энергетика и экология (ISJAEE). 2024;(3):12-27. https://doi.org/10.15518/isjaee.2024.03.012-027
For citation:
Kazantsev Yu.V., Kornilovich D.V., Khalyasmaa A.I., Arkhipov A.A., Miklukhin A.V., Sergievichev L.Yu., Tsuran M.V. Novel technologies for optimization of hydroelectric power plants with hydrogen energy storage system. Alternative Energy and Ecology (ISJAEE). 2024;(3):12-27. (In Russ.) https://doi.org/10.15518/isjaee.2024.03.012-027