Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Features of the voltage divider for kinetic energy storage devices and hydrogen batteries

https://doi.org/10.15518/isjaee.2024.03.071-080

Abstract

The results of theoretical and experimental study of a transformerless diode-capacitor voltage divider for kinetic energy harvesters are presented. The influence of the number of the divider cells, cycle duration, load resistance, diode reverse capacitances and capacitances of additional capacitors on the maximum and minimum load voltage in steadystate mode is investigated. It has been found that when the load resistance increases, the voltage division coefficient doesn’t remain the same. As a result, if the divider circuit parameters change, it is necessary to re-evaluate the division coefficient. It has been established that such behavior of the divider parameters is due to the presence of the diode reverse capacitances. Analytical expressions were obtained to calculate the parameters of the studied circuits of the transformerless diode-capacitor divider, their good agreement with experimental data is shown. Thus, these expressions can be used at the preliminary design stage of systems using transformerless diode-capacitor voltage dividers. In general, the analysis carried out and the approach being developed make it possible to significantly narrow the range of searching for the necessary system parameters at the preliminary design stage and reduce the design time.

About the Authors

V. P. Dragunov
Novosibirsk State Technical University
Russian Federation

 Valery P. Dragunov - professor of the Department of Semiconductor Devices and Microelectronics, Associate Professor. Doctor of Technical Sciences 

 Novosibirsk 



D. I. Ostertak
Novosibirsk State Technical University
Russian Federation

Dmitriy I. Ostertak - head of the Department of Semiconductor Devices and Microelectronics, Associate Professor, Candidate of Technical Sciences 

 Novosibirsk 



D. M. Kazymov
Novosibirsk State Technical University
Russian Federation

Dmitriy M. Kazymov - laboratory assistant of the Department of Semiconductor Devices and Microelectronics 

Novosibirsk 



E. Y. Kovalenko
Novosibirsk State Technical University
Russian Federation

Ekaterina Y. Kovalenko - laboratory assistant of the Department of Semiconductor Devices and Microelectronics 

Novosibirsk 



References

1. Shaikh F. K., Zeadally S. Energy harvesting in wireless sensor networks: A comprehensive review // Renewable and Sustainable Energy Reviews. – 2016. – Vol. 55. – P. 1041-1054.

2. Lundblad T., Taljegard M., Johnsson F. Centralized and decentralized electrolysis-based hydrogen supply systems for road transportation – A modeling study of current and future costs // International Journal of Hydrogen Energy. – 2023. – Vol. 48, № 12. –P. 4830-4844.

3. Linares J. I., Herranz L. E., Moratilla B. Y. Maximum efficiency of direct energy conversion systems. Application to fuel cells // International Journal of Hydrogen Energy. – 2011. – Vol. 36, № 16. – P. 10027-10032.

4. Jia Y., Xue A., Zhou Z., Wu Z., Chen J., Ma K. et al. Magnetostrictive/piezoelectric drum magnetoelectric transducer for H2 detection // International Journal of Hydrogen Energy. – 2013. – Vol. 38. – P. 14915-14919.

5. Huang X., Zhong T. Hydrokinetic energy harvesting from flow-induced vibration of a hollow cylinder attached with a bi-stable energy harvester // Energy Conversion and Management. – 2023. – Vol. 278, Art. – No. 116718.

6. Hu T., Wang H., Harmon W., Bamgboje D., Wang Z. -L. Current Progress on Power Management Systems for Triboelectric Nanogenerators // IEEE Trans Power Electron. – 2022. – Vol. 37. – P. 9850-9864.

7. Li Z., Yan Z., Luo J., Yang Z. Performance comparison of electromagnetic energy harvesters based on magnet arrays of alternating polarity and configuration // Energy Conversion and Management. – 2019. – Vol. 179. – P. 132-140.

8. Zhou S., Cao J., Inman D. J., Lin J., Liu S., Wang Z. Broadband tristable energy harvester: Modeling and experiment verification // Applied Energy. – 2014. – Vol. 133. – P. 33-39.

9. Wang J., Zhou S., Zhang Z., Yurchenko D. High-performance piezoelectric wind energy harvester with Y-shaped attachments // Energy Conversion and Management. – 2019. – Vol. 181. – P. 645-652.

10. Jeong S. Y., Jung H. J., Jabbar H., Hong S. K., Ahn J. H., Sung T. H. Design of a multiarray piezoelectric energy harvester for a wireless switch // International Journal of Hydrogen Energy. – 2016. – Vol. 41. – P. 12696-12703.

11. Song Y., Yang C. H., Hong S. K., Hwang S. J., Kim J. H., Choi J. Y. et al. Road energy harvester designed as a macro-power source using the piezoelectric effect // International Journal of Hydrogen Energy. – 2016. – Vol. 41. – P. 12563-12568.

12. Kurt E., Cottone F., Uzun Y., Orfei F., Mattarelli M., Özhan D. Design and implementation of a new contactless triple piezoelectrics wind energy harvester // International Journal of Hydrogen Energy. – 2017. – Vol. 42. – P. 17813-17822.

13. Shevtsov S., Chang S. -H. Modeling of vibration energy harvesting system with power PZT stack loaded on Li-Ion battery // International Journal of Hydrogen Energy. – 2016. – Vol. 41. – P. 12618-12625.

14. Scamman D., Newborough M., Bustamante H. Hybrid hydrogen-battery systems for renewable offgrid telecom power // International Journal of Hydrogen Energy. – 2015. – Vol. 40. – P. 13876-13887.

15. Tao K., Lye S. W., Miao J., Hu X. Design and implementation of an out-of-plane electrostatic vibration energy harvester with dual-charged electret plates // Microelectronic Engineering. – 2015. – Vol. 135. – P. 32-37.

16. Khan F. U., Qadir M. U. State-of-the-art in vibration-based electrostatic energy harvesting // J Micromech Microeng. – 2016. – Vol. 26. – P. 103001.

17. Zhao C., Yang Y., Upadrashta D., Zhao L. Design, modeling and experimental validation of a lowfrequency cantilever triboelectric energy harvester // Energy. – 2021. – Vol. 214, Art. – No. 118885.

18. Pace G., Serri M., Castillo A. E. D. R., Ansaldo A., Lauciello S., Prato M. et al. Nitrogen-doped graphene based triboelectric nanogenerators // Nano Energy. – 2021. – Vol. 87, Art. – No. 106173.

19. Toyabur Rahman M., Sohel Rana S., Salauddin Md., Maharjan P., Bhatta T., Kim H. et al. A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting // Applied Energy. – 2020. – Vol. 279, Art. – No. 115799.

20. Lo Monaco M., Russo C., Somà A. Numerical and experimental performance study of two-degrees-offreedom electromagnetic energy harvesters // Energy Conversion and Management: X. – 2023. – Vol. 18, Art. – No. 100348.

21. Lagomarsini C., Jean-Mistral C., Monfray S., Sylvestre A. Optimization of an electret-based soft hybrid generator for human body applications // Smart Mater Struct. – 2019. – Vol. 28, Art. – No. 104003.

22. Dragunov V. P., Ostertak D. I. Microelectromechanical converters // Russian Microelectronics. – 2012. – Vol. 41. – P. 107-121.

23. Torres E. O., Rincon-Mora G. A. A 0,7-µm BiCMOS Electrostatic Energy-Harvesting System IC // IEEE J Solid-State Circuits. – 2010. – Vol. 45. – P. 483-496.

24. Truong B. D., Le C. P., Halvorsen E., Roundy S. Power-electronic-interface topology for MEMS energy harvesting with multiple transducers // J Phys: Conf Ser. – 2018. – Vol. 1052, Art. – No. 012074.

25. Phan T. N., Azadmehr M., Le C. P., Halvorsen E. Low power electronic interface for electrostatic energy harvesters // J Phys: Conf Ser. – 2015. – Vol. 660, Art. – No. 012087.

26. Dragunov V. P., Ostertak D. I., Pelmenev K. G., Sinitskiy R. E., Dragunova E. V. Electrostatic vibrational energy converter with two variable capacitors // Sensors and Actuators A: Physical. – 2021. – Vol. 318. – P. 112501.

27. Asanuma H., Oguchi H., Hara M., Yoshida R., Kuwano H. Ferroelectric dipole electrets for output power enhancement in electrostatic vibration energy harvesters // Applied Physics Letters. – 2013. – Vol. 103, Art. – No. 162901.

28. Jie Wei, Risquez S., Mathias H., Lefeuvre E., Costa F. Simple and efficient interface circuit for vibration electrostatic energy harvesters // 2015 IEEE SENSORS, Busan: IEEE, 2015, p. 1-4.

29. Nintanavongsa P., Muncuk U., Lewis D. R., Chowdhury K. R. Design Optimization and Implementation for RF Energy Harvesting Circuits // IEEE J Emerg Sel Topics Circuits Syst. – 2012. – Vol. 2. – P. 24-33.

30. Ayudhya R. S. N. A switched-capacitor Dickson charge pumps for high-voltage high power applications // 2014 International Conference on Information Science, Electronics and Electrical Engineering, Sapporo, Japan: IEEE, 2014. – P. 1147-1150.

31. de Queiroz A. C. M., Macedo de Oliveira Filho L. C. Unipolar symmetrical variable-capacitance generators for energy harvesting // 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA: IEEE, 2017, p. 221-224.

32. Truong B. D., Le C. P., Halvorsen E. Comparative performance of voltage multipliers for MEMS vibration-based energy harvesters // J Phys: Conf Ser 2018. – Vol. 1052, Art. – No. 012118.

33. de Queiroz A. C. M. Analysis of the operation of a regenerative electrostatic energy harvester // 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal: IEEE, 2015, p. 1074-1077.

34. Jayaweera H. M. P. C., Muhtaroğlu A. Model Based Optimization of Integrated Low Voltage DC-DC Converter for Energy Harvesting Applications // J Phys: Conf Ser. – 2016. – Vol. 773, Art. – No. 012085.

35. Bedier M., Basset P., Galayko D. A Smart Load Interface and Voltage Regulator for Electrostatic Vibration Energy Harvester // J Phys: Conf Ser 2016. – Vol. 773, Art. – No. 012105.

36. Dragunov V., Dorzhiev V. Electrostatic vibration energy harvester with increased charging current // J Phys: Conf Ser. – 2013. – Vol. 476, Art. – No. 012115.

37. de Queiroz A. C. M. Biased capacitive divider electrostatic generators for energy harvesting // 2017 IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS), Bariloche, Argentina: IEEE, 2017, p. 1-4.

38. de Queiroz A. C. M., De Menezes N. A. T. Energy harvesting with pairs of variable capacitors without control circuits // Analog Integr Circ Sig Process. – 2018. – Vol. 97. – P. 533-544.

39. de Queiroz A. C. M. Steady-State Analysis of Electronic Electrostatic Generators // 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence: IEEE, 2018, p. 1-5.

40. Mahboubi F. E., Bafleur M., Boitier V., Alvarez A., Colomer J., Miribel P. et al. Self-Powered Adaptive Switched Architecture Storage // J Phys: Conf Ser. – 2016. – Vol. 773, Art. – No. 012103.

41. Karami A., Galayko D., Basset P. SeriesParallel Charge Pump Conditioning Circuits for Electrostatic Kinetic Energy Harvesting // IEEE Trans Circuits Syst I. – 2017. – Vol. 64. – P. 227-240. https://doi.org/10.1109/TCSI.2016.2603064.

42. De Michele G. Protected transformerless AC to DC power converter. Patent US 6061259 A. 2000.

43. Neil J., Francis J. Systems and Methods for Providing a Transformerless Power Supply. Patent US 20160233761 A1. 2016.


Review

For citations:


Dragunov V.P., Ostertak D.I., Kazymov D.M., Kovalenko E.Y. Features of the voltage divider for kinetic energy storage devices and hydrogen batteries. Alternative Energy and Ecology (ISJAEE). 2024;(3):71-80. (In Russ.) https://doi.org/10.15518/isjaee.2024.03.071-080

Views: 169


ISSN 1608-8298 (Print)