

Justification of the application of the sliding mode method for controlling the speed of the PMSM
https://doi.org/10.15518/isjaee.2024.03.081-090
Abstract
The study proposes an alternative to the classical PID controller algorithm for controlling the speed of a permanent magnets synchronous motor, called direct discontinuous control in sliding modes, based on relay controllers. Due to the advantages shown, this method is supposed to be used to control the speed of fuel cell vehicles. A mathematical description of the sliding mode method is presented, which gives an understanding of the processes occurring in the system during transient modes. Using mathematical modeling in MATLAB/Simulink, the dynamic characteristics of the transient process in terms of speed were compared for a system with classical PID controllers and a system with control in sliding modes. The system with sliding modes showed the best indicators of regulation time and response to load changes. Thus, it is concluded that the use of the sliding mode method is preferable in the tasks of speed control of fuel sell vehicles.
About the Authors
M. E. MosinRussian Federation
Mosin Mikhail Evgenievich - PhD student at the Department of Electric Drive and Automation of Industrial Units
K. Marx ave., 20, Novosibirsk, Russia, 630073
N. S. Popov
Russian Federation
Popov Nikita Sergeevich - PhD, Associate Professor at the Department of Electric Drive and Automation of Industrial Units
Elibrary AuthorID: 1084406 Scopus Author ID: 57215016363
K. Marx ave., 20, Novosibirsk, Russia, 630073
Tel.: +7 (383) 346-13-87
E. A. Domakhin
Russian Federation
Domakhin Evgeniy Alexandrovich - PhD, Associate Professor at the Department of Electric Drive and Automation of Industrial Units
Elibrary AuthorID: 1125405 Scopus Author ID: 57203246779
K. Marx ave., 20, Novosibirsk, Russia, 630073
M. E. Vilberger
Russian Federation
Vilberger Mikhail Evgenievich - PhD, Associate Professor at the department of Electromechanics
Elibrary AuthorID: 177083 Scopus Author ID: 57196261861
K. Marx ave., 20, Novosibirsk, Russia, 630073
References
1. De Wolf, D.; Smeers, Y. Comparison of Battery Electric Vehicles and Fuel Cell Vehicles. World Electr. Veh. J. 2023, 14, 262. https://doi.org/10.3390/wevj14090262
2. CNRS. Hydrogen Car for All? In Proceedings of the European Fuel Cell Car Workshop, Orléans, France, 1-3 March 2017; Available online: https://news.cnrs.fr/articles/hydrogen-cars-for-all (accessed on 1 September 2023).
3. Makaryan I. A., Sedov I. V. Assessing the economic efficiency of the scale of hydrogen production using various methods // Russian Chemical Journal. 2021. No. 1. URL: https://cyberleninka.ru/article/n/otsenka-ekonomicheskoy-effektivnosti-masshtabov-polucheniya-vodoroda-razlichnymi-metodami (date of access: 09.29.2023).].
4. Ryvkin Sergey Efimovich. Synthesis of control systems for automated synchronous electric drives using sliding modes: thesis. ...Dr. Tech. Sciences: 05.13.06. – Moscow, 2006. – 370 p. RSL OD, 71:07-5/66
5. Janos Mate Kiss, Peter Tamas Szemes, Petra Aradi. Sliding mode control of a servo system in LabVIEW: Comparing different control methods // International Review of Applied Sciences and Engineering. – 2021. – P. 201-210.
6. Pankratov V. V. Selected sections of the theory of automatic control: textbook. allowance / V.V. Pankratov, O.V. Nos, E.A. Zima. – Novosibirsk: NSTU Publishing House, 2011. – 223 p. (Series «Textbooks of NSTU»).
7. Nasri A., Gasbaoui B., Fayssal B. M. Sliding mode control for four wheels electric vehicle drive // Procedia Technology. – 2016. – Vol. 22. – P. 518-526.
8. On Chattering-Free Dynamic Sliding Mode Controller Design / Jean-Lin C.// Journal of Control Science and Engineering. – 2012. – Vol. 2012. – P. 1-7. Doi: 10.1155/2012/564906.
9. Alfian Ma’arif, Abdullah Cakan. Simulation and Arduino Hardware Implementation of DC MotorControlUsing Sliding Mode Controller // Journal of Robotics and Control (JRC). – 2021. – Vol. 2. – P. 582-587.
10. P. Sowjanya, S. Tarakalyani PI and sliding mode control for permanent magnet brushless DC motor // International journal of innovative technology and research. – 2013. – Vol. 1. – P. 497-502.
11. [Vinogradov A. B. Vector control of AC electric drives / Ivanovo State Energy University named after V. I. Lenin. – Ivanovo, 2008. – 321 p.
12. V. V. Pankratov, D. A. Kotin. Adaptive algorithms for sensorless vector control of asynchronous electric drives of hoisting and transport mechanisms: a textbook. – Novosibirsk: NSTU Publishing House, 2012. – 150 p.
13. Shiyi Fang, Rongrong Zhang, Sergey Maltsev, Daifen Chen, Xinyu Fan, Aleksey Levtsev. «A novel adaptive fast sliding mode control method based on fuzzy algorithm for the air management system of fuel cell stack» Process Safety and Environmental Protection, Volume 187, 2024, Pages 506-517, ISSN 0957-5820, https://doi.org/10.1016/j.psep.2024.04.088
14. Mohamed Derbeli, Oscar Barambones, Maissa Farhat, Jose Antonio Ramos-Hernanz, Lassaad Sbita. «Robust high order sliding mode control for performance improvement of PEM fuel cell power systems», International Journal of Hydrogen Energy, Volume 45, Issue 53, 2020. Pages 29222-29234, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2020.07.172
15. Usmanov, U.; Ruzimov, S.; Tonoli, A.; Mukhitdinov, A. Modeling. Simulation and Control Strategy Optimization of Fuel Cell Hybrid Electric Vehicle. 2023, 5, 464-481. https://doi.org/10.3390/vehicles5020026
16. Kamal, E.; Adouane, L. Optimized EMS and a Comparative Study of Hybrid Hydrogen Fuel Cell/Battery Vehicles. Energies 2022, 15, 738
17. Ajanovic, A.; Haas, R. Economic and Environmental Prospects for Battery Electric and Fuel Cell Vehicles: A Review. Fuel Cells 2019, 19, 515-529
18. Yun, Q.; Wang, X.; Yao, C.; Zhuang, W.; Shao, M.; Gao, H. A Second-Order Sliding Mode Voltage Controller with Fast Convergence for a Permanent Magnet Synchronous Generator System. Processes 2024, 12, 71. https://doi.org/10.3390/pr12010071
19. Liu, W.; Luo, B.; Yang, Y.; Niu, H.; Zhang, X.; Zhou, Y.; Zeng, C. An Adaptive-Gain Sliding Mode Observer with Precise Compensation for Sensorless Control of PMSM. Energies 2023, 16, 7968. https://doi.org/10.3390/en16247968
20. Chen, H.; Zhang, R.; Zhu, S.; Gao, J.; Zhou, R. Model Reference Adaptive Observer for Permanent Magnet Synchronous Motors Based on Improved Linear Dead-Time Compensation. Electronics 2023, 12, 4907. https://doi.org/10.3390/electronics12244907
21. Bensalem, Y.; Kouzou, A.; Abbassi, R.; Jerbi, H.; Kennel, R.; Abdelrahem, M. Sliding-Mode-Based Current and Speed Sensors Fault Diagnosis for Five-Phase PMSM. Energies 2022, 15, 71. https://doi.org/10.3390/en15010071
22. Soriano, L.A.; Rubio, J. d. J.; Orozco, E.; Cordova, D. A.; Ochoa, G.; Balcazar, R.; Cruz, D. R.; Meda-Campaña, J.A.; Zacarias, A.; Gutierrez, G. J. Optimization of Sliding Mode Control to Save Energy in a SCARA Robot. Mathematics 2021, 9, 3160. https://doi.org/10.3390/math9243160
23. Wang, M.; Xu, Y.; Zou, J. Sliding-Mode-Observer-Based Open-Switch Diagnostic Method for Permanent Magnet Synchronous Motor Drive Connected with LC Filter. Energies 2019, 12, 3288. https://doi.org/10.3390/en12173288
24. Deise Maria Cirolini Milbradt, Paulo Jefferson Dias de Oliveira Evald, Guilherme Vieira Hollweg, Hilton Abílio Gründling. A Hybrid Robust Adaptive Sliding Mode Controller for Partially Modeled Systems: Discrete-time Lyapunov Stability Analysis and Application, Nonlinear Analysis: Hybrid Systems, Volume 48, 2023, 101333, ISSN 1751-570X, https://doi.org/10.1016/j.nahs.2023.101333
25. Héctor Ríos, Manuel Mera, Andrey Polyakov. A New Finite-Time Sliding-Mode Controller for a Class of Second-Order Non-Linear Systems, IFAC-Papers-OnLine, Volume 56, Issue 2, 2023, Pages 49-53, ISSN 2405-8963, https://doi.org/10.1016/j.ifacol.2023.10.1394
Review
For citations:
Mosin M.E., Popov N.S., Domakhin E.A., Vilberger M.E. Justification of the application of the sliding mode method for controlling the speed of the PMSM. Alternative Energy and Ecology (ISJAEE). 2024;(3):81-90. (In Russ.) https://doi.org/10.15518/isjaee.2024.03.081-090