Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Improved techno-economic optimization of hybrid solar/wind/fuel cell/diesel systems with hydrogen energy storage

https://doi.org/10.15518/isjaee.2024.03.133-167

Abstract

In spite of concerns about pollution and high operational costs, diesel engines continue to dominate local electricity generation in off-grid areas. However, there is significant untapped potential worldwide for utilizing local renewable energy sources (RES) instead of fossil fuel generation, particularly in remote regions. To address the intermittent nature of RES, energy storage systems are crucial for off-grid communities, enabling them to rely on locally collected renewable energy. This study explores various off-grid renewable power system configurations, including batteries and hydrogen as energy storage options, to determine the most economically viable setup for remote areas. The analysis includes the Nickel-Iron (Ni-Fe) battery and considers electrolysis technology for hydrogen production. Two Integrated Hybrid Renewable Energy System (IHRES) configurations are modeled and evaluated: PV/Diesel Generator (DG)/Battery (Ni-Fe) and PV/Wind Turbines (WT)/DG/Hydrogen Storage System (HSS). The study employs a cycle charging (CC) strategy. A novel optimization algorithm called Quadratic interpolation-based artificial rabbits optimization (QIARO) is introduced to optimize the sizing of system components, ensuring cost-effective and reliable fulfillment of load demands. The effectiveness of the QIARO algorithm is initially validated through a comprehensive performance assessment, comparing it with the original artificial rabbits optimization (ARO) algorithm and other established optimization techniques across 7 benchmark functions. The results demonstrate that the QIARO algorithm surpasses the ARO algorithm, as well as other optimization techniques such as beluga whale optimization (BWO), pelican optimization algorithm (POA), weighted mean of vectors (INFO), and RUN ge Kutta optimizer (RUN), in terms of convergence speed and solution quality. After validation, the proposed algorithm is applied to the Baris Oasis in New Valley, Egypt, chosen as a representative case study of insular microgrid environments. The resulting outcomes are compared with those obtained using the original ARO algorithm, further highlighting the effectiveness of the proposed approach. Using the QIARO algorithm, the PV/DG/Battery (Ni-Fe) configuration and PV/WT/DG/HSS configuration achieve optimal Life Cycle Cost values of 645,271 USD and 1,852,421 USD, respectively.

About the Authors

Mohamed H. Hassan
Ministry of Electricity and Renewable Energy
Egypt

Mohamed H. Hassan - engineer  

Egypt, Cairo, Ramsis St. Abbassia 



Salah Kamel
Aswan University
Egypt

Salah Kamel - currently an Associate Professor with the Department
of Electrical Engineering, Advanced Power Systems Research Laboratory (APSR Lab), Power Systems Research Group 

81542, Aswan, Egypt 



M. Kh. Safaraliev
Ural Federal University
Russian Federation

Murodbek Safaraliev -   PhD, Senior Researcher, Department of «Automated Electrical Systems» 

 620002, Yekaterinburg 

 tel: +7 (950) 5644967 



S. E. Kokin
Ural Federal University
Russian Federation

 Sergey Kokin -  doctor tech. sciences, Professor of the Department of «Automated Electrical Systems»  

 620002, Yekaterinburg 



References

1. Blechinger P., Cader C., Bertheau P., Huyskens H., Seguin R., Breyer C. Global analysis of the techno-economic potential of renewable energy hybrid systems on small islands. Energy Policy 2016; 98:674-87. https://doi.org/10.1016/j.enpol.2016.03.043.

2. Nagpal D., Parajuli B. Off-grid renewable energy solutions to expand electricity access: An opportunity not to be missed. International Renewable Energy Agency (IRENA), Abu Dhabi 2019.

3. Marocco P., Ferrero D., Gandiglio M., Ortiz M. M., Sundseth K., Lanzini A. et al. A study of the techno-economic feasibility of H2-based energy storage systems in remote areas. Energy Convers Manag 2020; 211:112768. https://doi.org/10.1016/j.enconman.2020.112768.

4. Kalamaras E., Belekoukia M., Lin Z., Xu B., Wang H., Xuan J. Techno-economic Assessment of a Hybrid Off-grid DC System for Combined Heat and Power Generation in Remote Islands. Energy Procedia 2019; 158:6315–20. https://doi.org/10.1016/j.egypro.2019.01.406.

5. Koohi-Fayegh S., Rosen M. A. A review of energy storage types, applications and recent developments. J Energy Storage 2020; 27:101047. https://doi.org/10.1016/j.est.2019.101047.

6. Yang Y., Bremner S., Menictas C., Kay M. Battery energy storage system size determination in renewable energy systems: A review. Renewable and Sustainable Energy Reviews 2018; 91:109-25. https://doi.org/10.1016/j.rser.2018.03.047.

7. Kovač A., Paranos M., Marciuš D. Hydrogen in energy transition: A review. Int J Hydrogen Energy 2021; 46:10016-35. https://doi.org/10.1016/j.ijhydene.2020.11.256.

8. You C., Kim J. Optimal design and global sensitivity analysis of a 100 % renewable energy sources based smart energy network for electrified and hydrogen cities. Energy Convers Manag 2020; 223:113252. https://doi.org/10.1016/j.enconman.2020.113252.

9. Buffo G., Marocco P., Ferrero D, Lanzini A, Santarelli M. Power-to-X and power-to-power routes. Solar Hydrogen Production, Elsevier; 2019, p. 529-57. https://doi.org/10.1016/B978-0-12-814853-2.00015-1.

10. Malheiro A., Castro P. M., Lima R. M., Estanqueiro A. Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems. Renew Energy, 2015; 83:646-57. https://doi.org/10.1016/j.renene.2015.04.066.

11. Cai W., Li X., Maleki A., Pourfayaz F., Rosen M. A., Alhuyi Nazari M. et al. Optimal sizing and location based on economic parameters for an off-grid application of a hybrid system with photovoltaic, battery and diesel technology. Energy, 2020; 201:117480. https://doi.org/10.1016/j.energy.2020.117480.

12. Odou O. D. T., Bhandari R., Adamou R. Hybrid off-grid renewable power system for sustainable rural electrification in Benin. Renew Energy, 2020; 145:1266-79. https://doi.org/10.1016/j.renene.2019.06.032.

13. Bukar A. L., Tan C. W., Lau K. Y. Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm. Solar Energy, 2019; 188:685-96. https://doi.org/10.1016/j.solener.2019.06.050.

14. Bukar A. L., Tan C. W. A review on stand-alone photovoltaic-wind energy system with fuel cell: System optimization and energy management strategy. J Clean Prod, 2019; 221:73-88. https://doi.org/10.1016/j.jclepro.2019.02.228.

15. Sinha S., Chandel S. S. Review of software tools for hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 2014; 32:192-205. https://doi.org/10.1016/j.rser.2014.01.035.

16. Man K. F., Tang K. S., Kwong S. Genetic algorithms: concepts and applications [in engineering design]. IEEE Transactions on Industrial Electronics, 1996; 43:519-34. https://doi.org/10.1109/41.538609.

17. Kennedy J., Eberhart R. Particle swarm optimization. Proceedings of ICNN’95-international conference on neural networks, vol. 4, IEEE; 1995, p. 1942-8.

18. Saremi S., Mirjalili S., Lewis A. Grasshopper Optimisation Algorithm: Theory and application. Advances in Engineering Software. 2017; 105:30-47. https://doi.org/10.1016/j.advengsoft.2017.01.004.

19. Mirjalili S., Mirjalili S. M., Lewis A. Grey Wolf Optimizer. Advances in Engineering Software. 2014; 69:46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007.

20. Alamir N., Kamel S., Hassan M. H., Abdelkader S. M. An effective quantum artificial rabbits optimizer for energy management in microgrid considering demand response. Soft Comput, 2023; 27:15741-68. https://doi.org/10.1007/s00500-023-08814-5.

21. Wang Y., Li F., Yu H., Wang Y., Qi C., Yang J. et al. Optimal operation of microgrid with multi-energy complementary based on moth flame optimization algorithm. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020; 42:785-806. https://doi.org/10.1080/15567036.2019.1587067.

22. Almashakbeh A. S., Arfoa A. A., Hrayshat E. S. Techno-economic evaluation of an off-grid hybrid PVwind-diesel-battery system with various scenarios of system’s renewable energy fraction. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2023; 45:6162-85. https://doi.org/10.1080/15567036.2019.1673515.

23. Ramesh M., Saini R. P. Effect of different batteries and diesel generator on the performance of a standalone hybrid renewable energy system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2020:1-23. https://doi.org/10.1080/15567036.2020.1763520.

24. Upadhyay S., Sharma M. P. Selection of a suitable energy management strategy for a hybrid energy system in a remote rural area of India. Energy, 2016; 94:352-66. https://doi.org/10.1016/j.energy.2015.10.134.

25. Samy M. M., Barakat S., Ramadan H. S. A flower pollination optimization algorithm for an off-grid PV-Fuel cell hybrid renewable system. Int J Hydrogen Energy, 2019; 44:2141-52. https://doi.org/10.1016/j.ijhydene.2018.05.127.

26. Luta D. N., Raji A. K. Optimal sizing of hybrid fuel cell-supercapacitor storage system for off-grid renewable applications. Energy, 2019; 166:530-40. https://doi.org/10.1016/j.energy.2018.10.070.

27. Rajanna S., Saini R. P. Development of optimal integrated renewable energy model with battery storage for a remote Indian area. Energy, 2016; 111:803-17.

28. https://doi.org/10.1016/j.energy.2016.06.005.

29. Merei G., Berger C., Sauer D. U. Optimization of an off-grid hybrid PV–Wind–Diesel system with different battery technologies using genetic algorithm. Solar Energy, 2013; 97:460-73. https://doi.org/10.1016/j.solener.2013.08.016.

30. Maleki A. Design and optimization of autonomous solar-wind-reverse osmosis desalination systems coupling battery and hydrogen energy storage by an improved bee algorithm. Desalination, 2018; 435:221-34. https://doi.org/10.1016/j.desal.2017.05.034.

31. Wang L., Cao Q., Zhang Z., Mirjalili S., Zhao W. Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell, 2022; 114:105082. https://doi.org/10.1016/j.engappai.2022.105082.

32. Shouman E. R. International and national renewable energy for electricity with optimal cost effective for electricity in Egypt. Renewable and Sustainable Energy Reviews. 2017; 77:916-23. https://doi.org/10.1016/j.rser.2016.12.107.

33. IRENA GEC. Renewable capacity statistics 2020. International Renewable Energy Agency 2020.

34. Salah S. I., Eltaweel M., Abeykoon C. Towards a sustainable energy future for Egypt: A systematic review of renewable energy sources, technologies, challenges, and recommendations. Clean Eng Technol 2022; 8:100497. https://doi.org/10.1016/j.clet.2022.100497.

35. IRENA I. R. Renewable energy outlook: Egypt. International Renewable Energy Agency Abu Dhabi, 2018.

36. Gamil M. M., Lotfy M. E., Hemeida A. M., Mandal P., Takahashi H., Senjyu T. Optimal sizing of a residential microgrid in Egypt under deterministic and stochastic conditions with PV/WG/Biomass Energy integration. Aims Energy 2021;9.

37. Mondal Md. A. H., Ringler C., Al-Riffai P., Eldidi H., Breisinger C., Wiebelt M. Long-term optimization of Egypt’s power sector: Policy implications. Energy, 2019; 166:1063-73. https://doi.org/10.1016/j.energy.2018.10.158.

38. Kotb K. M., Elkadeem M. R., Elmorshedy M. F., Dán A. Coordinated power management and optimized techno-enviro-economic design of an autonomous hybrid renewable microgrid: A case study in Egypt. Energy Convers Manag, 2020; 221:113185. https://doi.org/10.1016/j.enconman.2020.113185.

39. Chauhan A., Saini R. P. Discrete harmony search based size optimization of Integrated Renewable Energy System for remote rural areas of Uttarakhand state in India. Renew Energy 2016; 94:587-604. https://doi.org/10.1016/j.renene.2016.03.079.

40. Ghenai C., Bettayeb M. Modelling and performance analysis of a stand-alone hybrid solar PV/Fuel Cell/Diesel Generator power system for university building. Energy, 2019; 171:180-9. https://doi.org/10.1016/j.energy.2019.01.019.

41. Razipour R., Moghaddas-Tafreshi S. -M., Farhadi P. Optimal management of electric vehicles in an intelligent parking lot in the presence of hydrogen storage system. J Energy Storage, 2019; 22:144-52. https://doi.org/10.1016/j.est.2019.02.001.

42. Argyrou M. C., Christodoulides P., Kalogirou S. A. Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications. Renewable and Sustainable Energy Reviews, 2018; 94:804-21. https://doi.org/10.1016/j.rser.2018.06.044.

43. Ogunjuyigbe A. S. O., Ayodele T. R., Akinola O. A. Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building. Appl Energy, 2016; 171:153-71. https://doi.org/10.1016/j.apenergy.2016.03.051.

44. Patel A. M., Singal S. K. Optimal component selection of integrated renewable energy system for power generation in stand-alone applications. Energy, 2019; 175:481-504. https://doi.org/10.1016/j.energy.2019.03.055.

45. Tu T., Rajarathnam G. P., Vassallo A. M. Optimization of a stand-alone photovoltaic–wind–diesel–battery system with multi-layered demand scheduling. Renew Energy, 2019; 131:333-47. https://doi.org/10.1016/j.renene.2018.07.029.

46. Upadhyay S., Sharma M. P. Development of hybrid energy system with cycle charging strategy using particle swarm optimization for a remote area in India. Renew Energy, 2015; 77:586-98. https://doi.org/10.1016/j.renene.2014.12.051.

47. Zhao W., Wang L., Zhang Z., Mirjalili S., Khodadadi N., Ge Q. Quadratic Interpolation Optimization (QIO): A new optimization algorithm based on generalized quadratic interpolation and its applications to real-world engineering problems. Comput Methods Appl Mech Eng. 2023; 417:116446. https://doi.org/10.1016/j.cma.2023.116446.

48. Hassan M. H., Kamel S., Alateeq A., Alassaf A., Alsaleh I. Optimal Power Flow Analysis With Renewable Energy Resource Uncertainty: A Hybrid AEO-CGO Approach. IEEE Access, 2023; 11:122926-61. https://doi.org/10.1109/ACCESS.2023.3328958.

49. Zhong C., Li G., Meng Z. Beluga whale optimization: A novel nature-inspired metaheuristic algorithm. Knowl Based Syst. 2022; 251:109215. https://doi.org/10.1016/j.knosys.2022.109215.

50. Trojovský P., Dehghani M. Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications. Sensors. 2022; 22:855. https://doi.org/10.3390/s22030855.

51. Ahmadianfar I., Heidari A. A., Noshadian S., Chen H., Gandomi A. H. INFO: An efficient optimization algorithm based on weighted mean of vectors. Expert Syst Appl. 2022; 195:116516.

52. Ahmadianfar I., Heidari A. A., Gandomi A. H., Chu X., Chen H. RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Syst Appl. 2021; 181:115079.

53. Odoi-Yorke F., Woenagnon A. Techno-economic assessment of solar PV/fuel cell hybrid power system for telecom base stations in Ghana. Cogent Eng. 2021; 8. https://doi.org/10.1080/23311916.2021.1911285.


Review

For citations:


Hassan M.H., Kamel S., Safaraliev M.Kh., Kokin S.E. Improved techno-economic optimization of hybrid solar/wind/fuel cell/diesel systems with hydrogen energy storage. Alternative Energy and Ecology (ISJAEE). 2024;(3):133-167. https://doi.org/10.15518/isjaee.2024.03.133-167

Views: 63


ISSN 1608-8298 (Print)