Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Усовершенствованная технико-экономическая оптимизация гибридных систем на солнечной энергии/ветре/топливных элементах/дизельном топливе с накоплением энергии на водороде

https://doi.org/10.15518/isjaee.2024.03.133-167

Об авторах

Мохаммед Х. Хассан
Министерство электроэнергетики и возобновляемых источников энергии
Египет

Мохаммед Х. Хассан - инженер

Египет, Каир, ул. Рамсиса Аббасея, 2 



Салах Камель
Асуанский университет
Египет

Салах Камель - доцент кафедры электротехники, Руководитель исследовательской лаборатории  передовых энергетических систем (PAR Lab), исследовательской группы энергетических систем 

81542 Асуан, Египет 



М. Х. Сафаралиев
Уральский федеральный университет
Россия

Сафаралиев Муродбек Холназарович -  к.т.н., старший научный сотрудник кафедры  «Автоматизированных электрических систем» 

 620002 Екатеринбург 

 тел.: +7 (950) 5644967



С. Е. Кокин
Уральский федеральный университет
Россия

Кокин Сергей Евгеньевич - доктор. техн. наук, профессор кафедры «Автоматизированных  электрических систем» 

 620002 Екатеринбург 



Список литературы

1. Blechinger P., Cader C., Bertheau P., Huyskens H., Seguin R., Breyer C. Global analysis of the techno-economic potential of renewable energy hybrid systems on small islands. Energy Policy 2016; 98:674-87. https://doi.org/10.1016/j.enpol.2016.03.043.

2. Nagpal D., Parajuli B. Off-grid renewable energy solutions to expand electricity access: An opportunity not to be missed. International Renewable Energy Agency (IRENA), Abu Dhabi 2019.

3. Marocco P., Ferrero D., Gandiglio M., Ortiz M. M., Sundseth K., Lanzini A. et al. A study of the techno-economic feasibility of H2-based energy storage systems in remote areas. Energy Convers Manag 2020; 211:112768. https://doi.org/10.1016/j.enconman.2020.112768.

4. Kalamaras E., Belekoukia M., Lin Z., Xu B., Wang H., Xuan J. Techno-economic Assessment of a Hybrid Off-grid DC System for Combined Heat and Power Generation in Remote Islands. Energy Procedia 2019; 158:6315–20. https://doi.org/10.1016/j.egypro.2019.01.406.

5. Koohi-Fayegh S., Rosen M. A. A review of energy storage types, applications and recent developments. J Energy Storage 2020; 27:101047. https://doi.org/10.1016/j.est.2019.101047.

6. Yang Y., Bremner S., Menictas C., Kay M. Battery energy storage system size determination in renewable energy systems: A review. Renewable and Sustainable Energy Reviews 2018; 91:109-25. https://doi.org/10.1016/j.rser.2018.03.047.

7. Kovač A., Paranos M., Marciuš D. Hydrogen in energy transition: A review. Int J Hydrogen Energy 2021; 46:10016-35. https://doi.org/10.1016/j.ijhydene.2020.11.256.

8. You C., Kim J. Optimal design and global sensitivity analysis of a 100 % renewable energy sources based smart energy network for electrified and hydrogen cities. Energy Convers Manag 2020; 223:113252. https://doi.org/10.1016/j.enconman.2020.113252.

9. Buffo G., Marocco P., Ferrero D, Lanzini A, Santarelli M. Power-to-X and power-to-power routes. Solar Hydrogen Production, Elsevier; 2019, p. 529-57. https://doi.org/10.1016/B978-0-12-814853-2.00015-1.

10. Malheiro A., Castro P. M., Lima R. M., Estanqueiro A. Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems. Renew Energy, 2015; 83:646-57. https://doi.org/10.1016/j.renene.2015.04.066.

11. Cai W., Li X., Maleki A., Pourfayaz F., Rosen M. A., Alhuyi Nazari M. et al. Optimal sizing and location based on economic parameters for an off-grid application of a hybrid system with photovoltaic, battery and diesel technology. Energy, 2020; 201:117480. https://doi.org/10.1016/j.energy.2020.117480.

12. Odou O. D. T., Bhandari R., Adamou R. Hybrid off-grid renewable power system for sustainable rural electrification in Benin. Renew Energy, 2020; 145:1266-79. https://doi.org/10.1016/j.renene.2019.06.032.

13. Bukar A. L., Tan C. W., Lau K. Y. Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm. Solar Energy, 2019; 188:685-96. https://doi.org/10.1016/j.solener.2019.06.050.

14. Bukar A. L., Tan C. W. A review on stand-alone photovoltaic-wind energy system with fuel cell: System optimization and energy management strategy. J Clean Prod, 2019; 221:73-88. https://doi.org/10.1016/j.jclepro.2019.02.228.

15. Sinha S., Chandel S. S. Review of software tools for hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 2014; 32:192-205. https://doi.org/10.1016/j.rser.2014.01.035.

16. Man K. F., Tang K. S., Kwong S. Genetic algorithms: concepts and applications [in engineering design]. IEEE Transactions on Industrial Electronics, 1996; 43:519-34. https://doi.org/10.1109/41.538609.

17. Kennedy J., Eberhart R. Particle swarm optimization. Proceedings of ICNN’95-international conference on neural networks, vol. 4, IEEE; 1995, p. 1942-8.

18. Saremi S., Mirjalili S., Lewis A. Grasshopper Optimisation Algorithm: Theory and application. Advances in Engineering Software. 2017; 105:30-47. https://doi.org/10.1016/j.advengsoft.2017.01.004.

19. Mirjalili S., Mirjalili S. M., Lewis A. Grey Wolf Optimizer. Advances in Engineering Software. 2014; 69:46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007.

20. Alamir N., Kamel S., Hassan M. H., Abdelkader S. M. An effective quantum artificial rabbits optimizer for energy management in microgrid considering demand response. Soft Comput, 2023; 27:15741-68. https://doi.org/10.1007/s00500-023-08814-5.

21. Wang Y., Li F., Yu H., Wang Y., Qi C., Yang J. et al. Optimal operation of microgrid with multi-energy complementary based on moth flame optimization algorithm. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020; 42:785-806. https://doi.org/10.1080/15567036.2019.1587067.

22. Almashakbeh A. S., Arfoa A. A., Hrayshat E. S. Techno-economic evaluation of an off-grid hybrid PVwind-diesel-battery system with various scenarios of system’s renewable energy fraction. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2023; 45:6162-85. https://doi.org/10.1080/15567036.2019.1673515.

23. Ramesh M., Saini R. P. Effect of different batteries and diesel generator on the performance of a standalone hybrid renewable energy system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2020:1-23. https://doi.org/10.1080/15567036.2020.1763520.

24. Upadhyay S., Sharma M. P. Selection of a suitable energy management strategy for a hybrid energy system in a remote rural area of India. Energy, 2016; 94:352-66. https://doi.org/10.1016/j.energy.2015.10.134.

25. Samy M. M., Barakat S., Ramadan H. S. A flower pollination optimization algorithm for an off-grid PV-Fuel cell hybrid renewable system. Int J Hydrogen Energy, 2019; 44:2141-52. https://doi.org/10.1016/j.ijhydene.2018.05.127.

26. Luta D. N., Raji A. K. Optimal sizing of hybrid fuel cell-supercapacitor storage system for off-grid renewable applications. Energy, 2019; 166:530-40. https://doi.org/10.1016/j.energy.2018.10.070.

27. Rajanna S., Saini R. P. Development of optimal integrated renewable energy model with battery storage for a remote Indian area. Energy, 2016; 111:803-17.

28. https://doi.org/10.1016/j.energy.2016.06.005.

29. Merei G., Berger C., Sauer D. U. Optimization of an off-grid hybrid PV–Wind–Diesel system with different battery technologies using genetic algorithm. Solar Energy, 2013; 97:460-73. https://doi.org/10.1016/j.solener.2013.08.016.

30. Maleki A. Design and optimization of autonomous solar-wind-reverse osmosis desalination systems coupling battery and hydrogen energy storage by an improved bee algorithm. Desalination, 2018; 435:221-34. https://doi.org/10.1016/j.desal.2017.05.034.

31. Wang L., Cao Q., Zhang Z., Mirjalili S., Zhao W. Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell, 2022; 114:105082. https://doi.org/10.1016/j.engappai.2022.105082.

32. Shouman E. R. International and national renewable energy for electricity with optimal cost effective for electricity in Egypt. Renewable and Sustainable Energy Reviews. 2017; 77:916-23. https://doi.org/10.1016/j.rser.2016.12.107.

33. IRENA GEC. Renewable capacity statistics 2020. International Renewable Energy Agency 2020.

34. Salah S. I., Eltaweel M., Abeykoon C. Towards a sustainable energy future for Egypt: A systematic review of renewable energy sources, technologies, challenges, and recommendations. Clean Eng Technol 2022; 8:100497. https://doi.org/10.1016/j.clet.2022.100497.

35. IRENA I. R. Renewable energy outlook: Egypt. International Renewable Energy Agency Abu Dhabi, 2018.

36. Gamil M. M., Lotfy M. E., Hemeida A. M., Mandal P., Takahashi H., Senjyu T. Optimal sizing of a residential microgrid in Egypt under deterministic and stochastic conditions with PV/WG/Biomass Energy integration. Aims Energy 2021;9.

37. Mondal Md. A. H., Ringler C., Al-Riffai P., Eldidi H., Breisinger C., Wiebelt M. Long-term optimization of Egypt’s power sector: Policy implications. Energy, 2019; 166:1063-73. https://doi.org/10.1016/j.energy.2018.10.158.

38. Kotb K. M., Elkadeem M. R., Elmorshedy M. F., Dán A. Coordinated power management and optimized techno-enviro-economic design of an autonomous hybrid renewable microgrid: A case study in Egypt. Energy Convers Manag, 2020; 221:113185. https://doi.org/10.1016/j.enconman.2020.113185.

39. Chauhan A., Saini R. P. Discrete harmony search based size optimization of Integrated Renewable Energy System for remote rural areas of Uttarakhand state in India. Renew Energy 2016; 94:587-604. https://doi.org/10.1016/j.renene.2016.03.079.

40. Ghenai C., Bettayeb M. Modelling and performance analysis of a stand-alone hybrid solar PV/Fuel Cell/Diesel Generator power system for university building. Energy, 2019; 171:180-9. https://doi.org/10.1016/j.energy.2019.01.019.

41. Razipour R., Moghaddas-Tafreshi S. -M., Farhadi P. Optimal management of electric vehicles in an intelligent parking lot in the presence of hydrogen storage system. J Energy Storage, 2019; 22:144-52. https://doi.org/10.1016/j.est.2019.02.001.

42. Argyrou M. C., Christodoulides P., Kalogirou S. A. Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications. Renewable and Sustainable Energy Reviews, 2018; 94:804-21. https://doi.org/10.1016/j.rser.2018.06.044.

43. Ogunjuyigbe A. S. O., Ayodele T. R., Akinola O. A. Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building. Appl Energy, 2016; 171:153-71. https://doi.org/10.1016/j.apenergy.2016.03.051.

44. Patel A. M., Singal S. K. Optimal component selection of integrated renewable energy system for power generation in stand-alone applications. Energy, 2019; 175:481-504. https://doi.org/10.1016/j.energy.2019.03.055.

45. Tu T., Rajarathnam G. P., Vassallo A. M. Optimization of a stand-alone photovoltaic–wind–diesel–battery system with multi-layered demand scheduling. Renew Energy, 2019; 131:333-47. https://doi.org/10.1016/j.renene.2018.07.029.

46. Upadhyay S., Sharma M. P. Development of hybrid energy system with cycle charging strategy using particle swarm optimization for a remote area in India. Renew Energy, 2015; 77:586-98. https://doi.org/10.1016/j.renene.2014.12.051.

47. Zhao W., Wang L., Zhang Z., Mirjalili S., Khodadadi N., Ge Q. Quadratic Interpolation Optimization (QIO): A new optimization algorithm based on generalized quadratic interpolation and its applications to real-world engineering problems. Comput Methods Appl Mech Eng. 2023; 417:116446. https://doi.org/10.1016/j.cma.2023.116446.

48. Hassan M. H., Kamel S., Alateeq A., Alassaf A., Alsaleh I. Optimal Power Flow Analysis With Renewable Energy Resource Uncertainty: A Hybrid AEO-CGO Approach. IEEE Access, 2023; 11:122926-61. https://doi.org/10.1109/ACCESS.2023.3328958.

49. Zhong C., Li G., Meng Z. Beluga whale optimization: A novel nature-inspired metaheuristic algorithm. Knowl Based Syst. 2022; 251:109215. https://doi.org/10.1016/j.knosys.2022.109215.

50. Trojovský P., Dehghani M. Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications. Sensors. 2022; 22:855. https://doi.org/10.3390/s22030855.

51. Ahmadianfar I., Heidari A. A., Noshadian S., Chen H., Gandomi A. H. INFO: An efficient optimization algorithm based on weighted mean of vectors. Expert Syst Appl. 2022; 195:116516.

52. Ahmadianfar I., Heidari A. A., Gandomi A. H., Chu X., Chen H. RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Syst Appl. 2021; 181:115079.

53. Odoi-Yorke F., Woenagnon A. Techno-economic assessment of solar PV/fuel cell hybrid power system for telecom base stations in Ghana. Cogent Eng. 2021; 8. https://doi.org/10.1080/23311916.2021.1911285.


Рецензия

Для цитирования:


Хассан М.Х., Камель С., Сафаралиев М.Х., Кокин С.Е. Усовершенствованная технико-экономическая оптимизация гибридных систем на солнечной энергии/ветре/топливных элементах/дизельном топливе с накоплением энергии на водороде. Альтернативная энергетика и экология (ISJAEE). 2024;(3):133-167. https://doi.org/10.15518/isjaee.2024.03.133-167

For citation:


Hassan M.H., Kamel S., Safaraliev M.Kh., Kokin S.E. Improved techno-economic optimization of hybrid solar/wind/fuel cell/diesel systems with hydrogen energy storage. Alternative Energy and Ecology (ISJAEE). 2024;(3):133-167. https://doi.org/10.15518/isjaee.2024.03.133-167

Просмотров: 65


ISSN 1608-8298 (Print)