Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Development of a technological scheme for the utilization of carbon dioxide and the production of biohydrogen using microalgae

https://doi.org/10.15518/isjaee.2024.05.021-029

Abstract

 This article presents a technological scheme for the utilization of carbon dioxide (CO2) and the production of biohydrogen using microalgae. Given the escalating issues associated with greenhouse gas emissions and the depletion of natural resources, there arises a necessity for the development of efficient and sustainable methods for environmentally friendly energy production. Microalgae, possessing the capability to sequester carbon dioxide during photosynthesis, emerge as an innovative solution within the realm of circular economy. The proposed technological scheme exhibits
significant potential in addressing pressing environmental concerns,  facilitating the transition towards a closed-loop sustainable economy.
 

About the Authors

K. A. Velmozhina
Federal State Autonomous Educational Institution of Higher Education «Peter the Great St. Petersburg Polytechnic University»
Russian Federation

Velmozhina Ksenia Alekseevna -  engineer at the research Laboratory of «Industrial Ecology» 

195251, St. Petersburg, ext. ter. Akademicheskoe Municipal district, st. Politekhnicheskaya, 29, litera B 



P. S. Shinkevich
Federal State Autonomous Educational Institution of Higher Education «Peter the Great St. Petersburg Polytechnic University»
Russian Federation

Shinkevich Polina Sergeevna - engineer at the research Laboratory of «Industrial Ecology» 

195251, St. Petersburg, ext. ter. Akademicheskoe Municipal district, st. Politekhnicheskaya, 29, litera B 



N. A. Politaeva
Federal State Autonomous Educational Institution of Higher Education «Peter the Great St. Petersburg Polytechnic University»
Russian Federation

Politaeva Natalia Anatolevna - professor at the Higher School of Hydraulic
and Energy Construction, professor, Doctor of Technical Sciences 

195251, St. Petersburg, ext. ter. Akademicheskoe Municipal district, st. Politekhnicheskaya, 29, litera B 



P. Yu. Mikheev
Federal State Autonomous Educational Institution of Higher Education «Peter the Great St. Petersburg Polytechnic University»
Russian Federation

Mikheev Pavel Yurevich -  Candidate of Technical Sciences, Associate Professor, senior lecturer of the Higher School of hydraulic and energy construction 

Researcher ID: K-1289-2013, Scopus ID: 57202760535 

195251, St. Petersburg, ext. ter. Akademicheskoe Municipal district, st. Politekhnicheskaya, 29, litera B 



References

1. Khan S., Thaher M., Abdulquadir M. et. all. Utilization of Microalgae for Urban Wastewater Treatment and Valorization of Treated Wastewater and Biomass for Biofertilizer Applications. Sustainability. 2023.

2. Lundquist T. J., Woertz I., Benemann J. R. Microalgae for wastewater treatment and biofuels production. ACS National Meeting Book of Abstracts. 2010.

3. Arbib Z., Marín D., Cano R., Saúco et. all. Large-scale demonstration of microalgae-based wastewater biorefineries. In: Integrated Wastewater Management and Valorization Using Algal Cultures, Goksel N. Demirer, Sibel Uludag-Demirer (eds.), Elsevier, pp. 215-234, ISBN 9780323858595. 2022. https://doi.org/10.1016/B978-0-323-85859-5.00007-5

4. Craggs R. J., Lundquist T. J. and Benemann J. R. Wastewater treatment and algal biofuel production. In: Algae for Biofuels and Energy, Dordrecht, Springer Netherlands, 2013. pp. 153-163.

5. Mehrabadi A., Craggs R., Farid M. M. et. all. Wastewater treatment high-rate algal pond biomass for biocrude oil production. Bioresource Technology. 2017. 224/255-264, https://doi.org/10.1016/j.biortech.2016.10.082

6. Acien G., Gómez C., Morillas-España A. et. all. (2023). Wastewater treatment by microalgae-based processes. 10.2166/9781789063547_0077.

7. Abdel-Raouf N., Al-Homaidan A., Ibraheem I. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences. 19. 257-275. 10.1016/j.sjbs.2012.04.005.

8. Moreno A., Rueda O., Cabrera E., Luna-del-Castillo, J.D., 1990. Standarization in wastewater biomass growth. Ig. Mod. 94 (1), 24-32.

9. Palmer C.M. Algae in american sewage stabilization’s ponds. Rev. Microbiol. (S-Paulo) 5, 75-80. 1974.

10. Зибарев Н. В. Использование электростимуляции при очистке сточных вод пивоваренного производства с помощью микроводорослей / Н. В. Зибарев, Н. А. Политаева, И. А. Левченко // Бутлеровские сообщения. – 2022. – Т. 70, № 6. – С. 96-103. – DOI 10.37952/ROIjbc-01/22-70-6-96. – EDN WRIQFA.

11. Культивирование и использование микроводорослей Chlorella и высших водных растений ряска Lemna / Н. А. Политаева, Ю. А. Смятская, Т. А. Кузнецова [и др.]; Санкт-Петербургский политехнический университет Петра Великого. – Санкт-Петербург: Санкт-Петербургская издательско-книготорговая фирма «Наука», 2017. – 87 с. – ISBN 978-5-9999-2883-2. – EDN FSMTGT.

12. Горбунов О. Водоросли против водорослей [Текст] / О. Горбунов // Изобретатель и рационализатор. – 2012. – № 12. – С. 9. – ISSN 0130-1802

13. Собгайда Н. А. Методология очистки сточных вод химических и нефтехимических отраслей промышленности фитосорбентами и модифицированными отходами агропромышленного комплекса [Текст]: автореф. дис. … док.техн. наук: 03.02.08 / Н. А. Собгайда. – Казань, 2011. – 39 с.

14. Лукьянов, В. А. К вопросу использования Chlorella vulgaris для биологической доочистки сточных вод [Текст] / В. А. Лукьянов // Актуальные проблемы агропромышленного производства. – 2013. – С. 49-51.

15. Wang B, Li Y., Wu N., Lan CQ. CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707-718 (2008).

16. Zhang, Shuping & Liu, Zhenrong. (2021). Advances in the biological fixation of carbon dioxide by microalgae. Journal of Chemical Technology & Biotechnology. 96. 10.1002/jctb.6714.

17. Lam M. K., Lee K. T., Mohamed A. R., Current status and challenges on microalgae-based carbon capture. Int. J.Greenhouse Gas Control 10: 456-469 (2012).

18. Singh S. P. and Singh P., Effect of CO2 concentration on algal growth: a review. Renew Sustain Energy Rev 38:172-179 (2014).

19. Razzak S. A., Hossain M. M., Lucky R. A. et. all. Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing-a review. Renew Sustain Energy Rev 27:622-653 (2013).

20. Марков С. А. «Использование водорослей для получения биотоплива и удаления избытка углекислого газа из атмосферы» Альтернативная энергетика и экология, №. 2, 2009, pp. 83-90.

21. Politaeva N., Ilin I., Velmozhina K., Shinkevich P. Carbon Dioxide Utilization Using Chlorella Microalgae. Environments 2023. 10. 109. https://doi.org/10.3390/environments10070109

22. Wei L., Shen C., Hajjami M., You W., Wang Q. et al., Knockdown of carbonate anhydrase elevates Nannochloropsis productivity at high CO2 level. Metab Eng 54:96-108 (2019).

23. Ohara H., Biorefinery. Appl Microbiol Biotechnol 62:474-477 (2003).

24. Trivedi J., Aila M., Bangwal D. P., Kaul S. and Garg M. O., Algae based biorefinery-how to make sense? Renew Sustain Energy Rev 47: 295-307 (2015).

25. Sung K. D., Lee J. S., Shin C. S., Park S. C. and Choi M. J., CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresour Technol 68: 269-273 (1999).

26. Singh B., Guldhe A., Singh P. et. all. Sustainable production of biofuels from microalgae using a Biorefinary approach, in Applied Environmental Biotechnology: Present Scenario and Future Trends, ed. by Kaushik G. Springer, Berlin, pp. 115–128 (2015).

27. Wiesberg I., Brigagão G. (2017). Carbon dioxide utilization in a microalga-based biorefinery: Efficiency of carbon removal and economic performance under carbon taxation. Journal of Environmental Management. 203. 10.1016/j.jenvman.2017.03.005.

28. Политаева Н. А., Ильин И. В., Опарина А. М., Донецкова А. С. Новые энергетические подходы использования отработанных биосорбентов микроводорослей Chlorella kessleri (Chlorellaceae, Chlorellales). Поволжский экологический журнал. 2022; (3):322-335. https://doi.org/10.35885/1684-7318-2022-3-322-335

29. Aziz M., Zaini I. N., Zaini. Production of hydrogen from algae: Integrated gasification and chemical looping. Energy Procedia 2017, 142, 210-215.

30. Yuan S., Lei W., Liu Q. et. all. Distribution and environmental impact of microalgae production potential under the carbon-neutral target. Energy 2022, 263, 125584.

31. El-Sheekh M., Elshobary M., Abdullah E. et. all. Application of a novel biological-nanoparticle pretreatment to Oscillatoria acuminata biomass and coculture dark fermentation for improving hydrogen production. Microb. Cell Factories 2023, 22, 34.

32. Xu Y., Deng Y., Liu W. et. all. Research progress of hydrogen energy and metal hydrogen storage materials. Sustain. Energy Technol. Assess. 2023, 55, 102974.

33. Singh V., Das D. Potential of hydrogen production from biomass. In Science and Engineering of Hydrogenbased Energy Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 123-164.

34. Morales T. C., Oliva V. R., Velázquez L. F. Hydrogen from Renewable Energy in Cuba. Energy Procedia 2014, 57, 867-876.

35. Mahidhara G., Burrow H., Sasikala C., Ramana C. V. Biological hydrogen production: Molecular and electrolytic perspectives. World J. Microbiol. Biotechnol. 2019, 35, 116-213.

36. O-Thong S. Microbial population optimization for control and improvement of dark hydrogen fermentation. In Fermentation Processes; Jozala, A. F., Ed.; InTech: Rijeka, Croatia, 2017; pp. 119-144.

37. Yang G., Wang J. Changes in microbial community structure during dark fermentative hydrogen production. Int. J. Hydrogen Energy 2019, 44, 25542-25550.

38. Brar K. K., Cortez A. A., Pellegrini V. O. et. all. An overview on progress, advances, and future outlook for biohydrogen production technology. Int. J. Hydrogen Energy 2022, 47, 37264-37281.

39. Nayak B. K., Roy, S., Das D. Biohydrogen production from algal biomass (Anabaena sp. PCC 7120) cultivated in airlift photobioreactor. Int. J. Hydrogen Energy 2014, 39, 7553-7560.

40. Nagarajan D., Dong C., Chen C., et. all. Biohydrogen production from microalgae – Major bottlenecks and future research perspectives. Biotechnol. J. 2020, 16, e2000124.

41. Benemann J. R. Hydrogen and methane production through microbial photosynthesis. In Living Systems as Energy Converters; Elsevier/North-Holland Biomedical Press: Amsterdam, The Netherlands, 1977; pp. 285-298.

42. Huesemann M. H., Benemann J. R., Biofuels from Microalgae: Review of Products, Processes and Potential, with Special Focus on Dunaliella sp. In The Alga Dunaliella; CRC Press: London, UK, 2009; pp. 445–474.

43. Sallam E. R., Khairy H. M., Elshobary M., Fetouh H. A. Application of algae for hydrogen generation and utilization. In Handbook of Research on Algae as a Sustainable Solution for Food, Energy, and the Environment; El-Sheekh, M. M., Abdullah, N., Ahmad, I., Eds.; IGI Global: Hershey, PA, USA, 2022; pp. 354-378.

44. Benemann, J. Hydrogen biotechnology: Progress and prospects. Nat. Biotechnol. 1996, 14, 1101-1103.

45. Benemann J. R. Hydrogen production by microalgae. J. Appl. Phycol. 2000, 12, 291-300.

46. Nath, K., Das D. Improvement of fermentative hydrogen production: Various approaches. Appl. Microbiol. Biotechnol. 2004, 65, 520 529.

47. Martínez V. L., Salierno G. L., García R. E., Lavorante M. J., Galvagno M. A., Cassanello M. C. Biological Hydrogen Production by Dark Fermentation in a Stirred Tank Reactor and Its Correlation with the pH Time Evolution. Catalysts 2022, 12, 1366.

48. Ubando, A. T., Chen W. H., Hurt, D.A. et. all. Biohydrogen in a circular bioeconomy: A critical review. Bioresour. Technol. 2022, 366, 128168.

49. Vdovychenko, A., Golub, N. (2022). The effect of gas emissions components on the growth of Chlorella vulgaris microalgae. Visnyk of Lviv University. Biological series. 3-14. 10.30970/vlubs.2022.86.01.

50. García-Cubero R., Moreno F., José G. (2018). Potential of Chlorella vulgaris to Abate Flue Gas. Waste and Biomass Valorization. 9. 10.1007/s12649-017-9987-9.

51. Maeda K., Owada M., Kimura N., Omata K., Karube I. CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Convers Manage. 1995; 36: 717-720.

52. Fistarol G., Farias M., Salomon P. (2016). Viability of Using Flue Gases as Carbon Source for Microalgae Cultivation. International Journal of Green Technology. Int J Green Technol. 13-19. 10.30634/2414-2077.2016.02.2.

53. Hanifzade M., Sarrafzadeh M., Tavakoli O. (2012). Carbon dioxide biofixation and biomass production from flue gas of power plant using microalgae. 61-64. 10.1109/ICREDG.2012.6190469.

54. Chien T. W., Chu H. (2000) Removal of SO2 and NO from fue gas by wet scrubbing using an aqueous NaClO2 solution. J Hazard Mater 80(1-3):43-57. https://doi.org/10.1016/s0304-3894(00)00274-0

55. Park J. H., Ahn J. W., Kim K. H., Son Y. S. (2019) Historic and futuristic review of electron beam technology for the treatment of SO2 and NOx in fue gas. Chem Eng J 355:351-366. https://doi.org/10.1016/j.cej.2018.08.103

56. Wang Bo, Xu, Yu-Fei, Sun, Zhong-Liang. (2022). Mass transfer characteristics and effect of flue gas used in microalgae culture. Applied Microbiology and Biotechnology. 106. 1-13. 10.1007/s00253-022-12206-4.


Review

For citations:


Velmozhina K.A., Shinkevich P.S., Politaeva N.A., Mikheev P.Yu. Development of a technological scheme for the utilization of carbon dioxide and the production of biohydrogen using microalgae. Alternative Energy and Ecology (ISJAEE). 2024;(5):21-29. (In Russ.) https://doi.org/10.15518/isjaee.2024.05.021-029

Views: 95


ISSN 1608-8298 (Print)