Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Determination of the energy efficiency of the life cycles of wind farms by aggregated data of energy costs

https://doi.org/10.15518/isjaee.2024.04.025-041

Abstract

   The paper describes a new method for determining the energy efficiency of the life cycles of wind farms by the aggregated data of energy costs. The rationale for the use of aggregated data to determine energy costs during the life cycle of the wind farms is given. The classification of wind turbines and wind farms elements by the parameters and technical characteristics of the elements with subsequent division into groups for which aggregated data of energy costs are determined is given. Within the framework of the method have been developed an algorithm for determining energy costs on the production of elements of wind turbines and wind farms and formulas for their calculation during the life cycle of wind farms. In order to test the method, energy cost was calculated during the life cycle for two wind farms with wind turbines that differ parameters and technical characteristics of the elements and their energy efficiency was determined. In the article also has been shown that the use of a hydrogen storage unit as part of a wind turbine makes it possible to efficiently use energy during down periods and increase the efficiency of the installation by 25-30%. It is noteworthy that a wind-hydrogen farm allows not only to accumulate excess energy during lean periods, but also to save the resource of wind turbines. When the energy reserve in the hydrogen battery reaches close to full, part of the wind turbines of the wind-hydrogen farm can be automatically temporarily stopped in a given order.

About the Authors

P. Yu. Mikheev
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Pavel Yurevich Mikheev, Candidate of Technical Sciences, Associate Professor,
senior lecturer

Higher School of hydraulic and energy construction

195251; st. Politekhnicheskaya, 29, litera B; St. Petersburg; ext. ter. Akademicheskoe Municipal district

Education: Peter the Great Saint-Petersburg Polytechnic University (Leningrad Polytechnic Institute), 2006.

Research area: Power Engineering and Environmental Engineering

Publications: more than 35

H-index: 5

Researcher ID: K-1289-2013

Scopus ID: 57202760535



M. P. Fedorov
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Mikhail Petrovich Fedorov, Academician of Russian Academy of Sciences, Doctor of Technical Sciences, President of Peter the Great Saint-Petersburg Polytechnic University

195251; st. Politekhnicheskaya, 29, litera B; St. Petersburg; ext. ter. Akademicheskoe Municipal district

Education: Peter the Great Saint-Petersburg Polytechnic University (Leningrad Polytechnic Institute), 1968.

Research area: Power Engineering and Environmental Engineering

Publications: more 200

Hi-index: 16

Researcher ID: GVU-4729-2022



A. N. Chusov
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Aleksandr Nickolaevich Chusov, Candidate of Technical Sciences, Associate Professor

195251; st. Politekhnicheskaya, 29, litera B; St. Petersburg; ext. ter. Akademicheskoe Municipal district

Education: Peter the Great Saint-Petersburg Polytechnic University (Leningrad Polytechnic Institute), 1982.

Research area: Power Engineering and Environmental Engineering

Publications: 223

Hi-index: 17

Researcher ID: M-6874-2014



N. A. Politaeva
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Natalia Anatolevna Politaeva, Doctor of Technical Sciences, professor

Higher School of Hydraulic and Energy Construction

195251; st. Politekhnicheskaya, 29, litera B; St. Petersburg; ext. ter. Akademicheskoe Municipal district

Education: State Educational Institution of Higher Professional Education «Saratov State Technical University», 1994

Research interests: Innovative sorption materials for wastewater treatment. Use and recycling of waste according to the principle of circular economy. Production of biodiesel from biomass. Intensification of phytoremediation
technologies for wastewater treatment. Development of technological modes of cultivation of producing microorganisms (cultivation of microalgae) to obtain biomass, its components, metabolic products. Creation of effective compositions of biological products and development of methods of their application. Thickening of biomass, separation of cell suspensions, drying, granulation, extraction, isolation, fractionation, purification, control and
storage of final target products

Publications: more than 300 scientific papers published in peer-reviewed scientific publications recommended by the Higher Attestation Commission and included in the SCOPUS database (87 scientific articles), author of 10 patents, 8 monographs (3 monographs published abroad), and author of 8 textbooks



References

1. Renewables Global Status Report 2022. Available online: https://www.ren21.net/wp-content/up-loads/2019/05/GSR2023_Full_Report.pdf (accessed on 13 May 2023).

2. Sidorenko G. I., Mikheev P. Yu. Analysis of changes in the values of capital investments for the construction of power facilities based on renewable energy sources. Energetic. – 2017. – № 10. – pp. 34-37.

3. Renewable Power Generation Costs in 2022. Available online: https://www.irena.org/publications/2022/Jul/Renewable-Power-Generation-Costs-in-2021 (accessed on 13 April 2023).

4. Sidorenko G. I., Mikheev P. Yu. On the issue of the efficiency of renewable energy facilities. Energy: economics, technology, ecology. – 2018. – № 2. – pp. 9-16.

5. Fedorov M. P., Okorokov V. R., Okorokov R. V. Energy Technology and Global Economic Development: Past, Present, Future. St. Petersburg: Science. – 2010. – 412 p.

6. Sidorenko G. I., Mikheev P. Yu. Assessment of energy efficiency of power plant life cycles on the basis of res. International Scientific Journal for Alternative Energy and Ecology, 2017. – № 1-3. – pp. 101-110.

7. Fonseca L., Carvalho M. Greenhouse gas and energy payback times for a wind turbine installed in the Brazilian Northeast. Frontiers in Sustainability. – 2022. – pp. 1-10.

8. Gomaa M. R., Rezk H. Mustafa R. J., Al-Dhaifallah M. Evaluating the Environmental Impacts and Energy Performance of a Wind Farm System Utilizing the Life-Cycle Assessment Method: A Practical Case Study. Energies. – № 12. – 2019.

9. International Organization for Standardization. Environmental management – Life cycle assessment – Re quirements and guidelines. Switzerland: ISO 14044:2006. – 46 p.

10. International Organization for Standardization. Environmental management – Life cycle assessment – Principles and framework. Switzerland: ISO 14040:2006. – 28 p.

11. International Organization for Standardization. Greenhouse gases – Carbon footprint of products – Requirements and guidelines for quantification. Switzerland: ISO 14067:2018. – 42 p.

12. International Organization for Standardization. Greenhouse gases – Carbon footprint of products – Requirements and guidelines for quantification. Switzerland: ISO 14067:2018. – 42 p.

13. International Organization for Standardization. Environmental management – Life cycle assessment – Critical review processes and reviewer competencies: Ad ditional requirements and guidelines to ISO 14044:2006. Switzerland: ISO/TS 14071:2014. – 11 p.

14. Wind Technologies Market Report 2018. U. S. Department of Energy. Office Energy Efficiency and Renewable Energy. Available online: https://www.energy.gov/sites/prod/files/2019/08/f65/2018%20Wind%20Technologies%20Market%20Report%20FINAL.pdf (accessed on 13 April 2022).

15. Land-Based Wind Market Report: 2021 Edition. U. S. Department of Energy. Office of Energy Efficiency and Renewable Energy. Available online: https://www.energy.gov/sites/default/files/2021-08/Land-Based%20Wind%20Market%20Report%202021%20Edition_Full%20Report_FINAL.pdf (accessed on 13 April 2022).

16. Land-Based Wind Market Report: 2022 Edition. U. S. Department of Energy. Office of Energy Efficiency and Renewable Energy. Available online: https://www.energy.gov/sites/default/files/202208/land_based_wind_market_report_2202.pdf (accessed on 13 April 2022).

17. Sidorenko G. I., Mikheev P. Yu. Influence of parameters and technical characteristics of wind turbine elements on financial costs, energy costs and emissions of pollutants. Industrial Energy. – 2018. – № 4. – pp. 101–110.

18. Garrett P., Ronde K. Life cycle assessment of electricity production from an onshore V100-1.8 MW wind plant. Vestas Wind Systems A/S. – 2011. – 105 p.

19. Garrett P., Ronde K. Life cycle assessment of electricity production from a V80-2.0 MW gridstreamer wind plant. Vestas Wind Systems A/S. – 2011. – 104 p.

20. Garrett P., Ronde K. Life cycle assessment of electricity production from a V90-2.0 MW gridstreamer wind plant. Vestas Wind Systems A/S. – 2011. – 105 p.

21. Garrett P., Priyanka R. Life cycle assessment of electricity production from an onshore V100-2.0 MW wind plant. Vestas Wind Systems A/S. – 2015. – 130 p.

22. Garrett P., Priyanka R. Life cycle assessment of electricity production from an onshore V110-2.0 MW Wind Plant. Vestas Wind Systems A/S. – 2015. – 129 p.

23. Garrett P., Priyanka R. Life cycle assessment of electricity production from an onshore V116-2.0 MW wind plant. Vestas Wind Systems A/S. – 2018. – 134 p.

24. Garrett P., Priyanka R. Life cycle assessment of electricity production from an onshore V120-2.0 MW wind plant. Vestas Wind Systems A/S. – 2018. – 133 p.

25. Garrett P., Ronde K. Life cycle assessment of electricity production from an onshore V100-2.6 MW wind plant. Vestas Wind Systems A/S. – 2013. – 107 p.

26. Garrett P., Ronde K. Life cycle assessment of electricity production from an onshore V90-3.0 MW wind plant. Vestas Wind Systems A/S. – 2013. – 106 p.

27. Garrett P., Ronde K. Life cycle assessment of electricity production from an onshore V105-3.3 MW wind plant. Vestas Wind Systems A/S. – 2014. – 116 p.

28. Garrett P., Ronde K. Life cycle assessment of electricity production from an onshore V112-3.3 MW wind plant. Vestas Wind Systems A/S. – 2015. – 141 p.

29. Garrett P., Ronde K. Life cycle assessment of electricity production from an onshore V117-3.3 MW wind plant. Vestas Wind Systems A/S. – 2014. – 117 p.

30. Garrett P., Ronde K. Life cycle assessment of electricity production from an onshore V126-3.3 MW wind plant. Vestas Wind Systems A/S. – 2014. – 116 p.

31. Garrett P., Priyanka R. Life cycle assessment of electricity production from an onshore V105-3.45 MW wind plant. Vestas Wind Systems A/S. – 2017. – 134 p.

32. Garrett P., Priyanka R. Life cycle assessment of electricity production from an onshore V112-3.45 MW wind plant. Vestas Wind Systems A/S. – 2017. – 137 p.

33. Garrett P., Priyanka R. Life cycle assessment of electricity production from an onshore V117-3.45 MW wind plant. Vestas Wind Systems A/S. – 2017. – 134 p.

34. Garrett P., Priyanka R. Life cycle assessment of electricity production from an onshore V126-3.45 MW wind plant. Vestas Wind Systems A/S. – 2017. – 134 p.

35. Garrett P., Priyanka R. Life cycle assessment of electricity production from an onshore V136-3.45 MW wind plant. Vestas Wind Systems A/S. – 2017. – 136 p.

36. Garrett P., Priyanka R. Life cycle assessment of electricity production from an onshore V117- 4.2 MW wind plant. Vestas Wind Systems A/S. – 2022. – 134 p.

37. Sagar M., Garrett P. Life cycle assessment of electricity production from an onshore V136-4.2 MW wind plant. Vestas Wind Systems A/S. – 2022. – 133 p.

38. Sagar M., Garrett P. Life cycle assessment of electricity production from an onshore V150-4.2 MW wind plant. Vestas Wind Systems A/S. – 2022. – 134 p.

39. Mikheev P. Yu., Sidorenko G., Okorokov R. V., Timofeeva A. Determination of Energy Costs of Wind Farms at All Life Cycle Stages. Advances in Intelligent Systems and Computing. 2020. – Т. 982. – pp. 242-256.

40. Sidorenko G. I., Mikheev P. Yu. Energy efficiency estimates of the life cycles of onshore wind farms. Energy Management Abroad. – 2019. – № 3. – pp. 20-31.

41. Mikheev P. Yu. Determination of emissions of pollutants in the production of elements of wind turbines and wind farms by aggregated data. Energy: economics, technology, ecology. – 2023. – № 5. – pp. 38-52.

42. Technical specifications wind turbine Vestas V110-2MW. Available online: https://www.vestas.com/en/products/2-mw-platform/V110-2-0-mw (accessed on 27 April 2022).

43. Technical specifications wind turbines Vestas V136-3,45 MW. Available online: https://www.vestas.com/en/products/4-mw-platform/V136-3-45-MW (accessed on 27 April 2022).

44. Cryogenic Tank. Gusev A. L., Kudryavtsev I. I., Kupriyanov V. I., Kryakovkin V. P., Terekhov A. S. – Application. 13.11.91, no. 5009089/25, Publ. BI no. 18, 1997, INN: F17C3/08.

45. Patent of the Russian Federation № 2082910. Cryogenic Tank and Method for Activation of a Chemical Absorbent before Placing it in the Thermal Insulation Cavity of a Cryogenic Tank. Gusev A. L., Kudryavtsev I. I., Kupriyanov V. I., Kryakovkin V. P., Terekhov A. S. – claimed. – No. 5009266/26, Op. BI No. 18, 1997, INN: F17C3/00, 13/00.

46. Patent of the Russian Federation № 2052158. Method for the Operation of a Vacuum Cryoadsorption Device in the Thermal Insulation Cavity of a Cryogenic Tank. Gusev A. L., Isaev A. V., Kupriyanov V. I., Makarov A. A., Terekhov A. S. – Application. 13.11.91, No.5009136/06, Publ. BI № 1, 1996, I. C. F04B37/02.

47. Patent of Russian Federation № 2047813. Cryogenic Tank. Gusev A. L., Kudryavtsev I. I., Kryakovkin V. P., Kupriyanov V. I., Terekhov A. S., Garkusha A. P. – applied for. 10.12.91., № 5015702/26.

48. Patent of Russian Federation № 2103598. Cryogenic pipeline. Gusev A. L. – Application. 5.12.95, № 95120543/06, publ. in BI#3, 1998, ITC F17D5/00, F16L59/06.

49. Patent of the Russian Federation № 2113871. A method for preventing fire in closed containers and pipelines and a cryogenic pipeline. Gusev A. L., Belousov V. M., Kupriyanov V. I., Kudryavtsev I. I., Kryakovkin V. P., Lyashenko L. V., Bocharikova I. V., Rozhkova E. V., Vysotsky A. F., Schwanke D. V. – Appl. 4.01.96., № 96100184/12, publ. in BI No. 18, MKI A62S2/00.3/ 00.

50. [50]. Patent RF 2113871. Methods of preventing fires in closed vessels and pipelines and a cryogenic pipe-line. IC 1 A62C2/00,3/00. BI 1 18, 1998. Gusev A. L., Belousov V. M., Kupriyanov V. I. et al., 1998.

51. Patent RF 2103598. Cryogenic pipeline. IC F17D5/00, F16L59/06. BI 1 3, 1998. Gusev A. L., Kudryavtsev I. I., Turundaev A. R., 1995.

52. Gusev A. L. Project Proposal #1580 «Hydrogen Detectors» // International Scientific Journal for Alternative Energy and Ecology, Issue1, pp. 222-226, 2000.

53. Gusev A. L. Brief information on the project: «Alternative energy and ecology in ISTC projects» // International scientific journal «Alternative energy and ecology». 2000. №1, pp. 227-228.

54. Gusev A. L. Low-temperature sensors and hydrogen absorbers. // Alternative energy and ecology, Special issue, 2003, 110-114, pp., 172 p.

55. Gusev A. L., Kudel’kina E. V., Chaban P.A., Ivkin A. V., Veziroglu T. N., Hampton M. D. Hydrogen sensors for hydrogen transport. The Proceedings for the 30sup>th</sup> ISTC Japan Workshop on Advanced Catalysis Technologies in Russia, April 12-19, 2004, Visits to Companies in Japan, Sponsor: Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan-Rissia Business Cooperation committee; International Science and Technology Center (ISTC). – pp. 232-233.

56. Gusev A. L., Kudel’kina E. V., Chaban P. A., Ivkin A. V., Veziroglu T. N., Hampton M. D. «Edel’weis-001» standardized unit for testing hydrogen transport sensors. The Proceedings for the 30sup>th</sup> ISTC Japan Workshop on Advanced Catalysis Technologies in Russia, April 12-19, 2004, Visits to Companies in Japan, Sponsor: Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan-Rissia Business Cooperation committee; International Science and Technology Center (ISTC). – pp. 234-235.

57. Gusev A. L., Kudel’kina E. V., Chaban P. A., Ivkin A. V., Veziroglu T. N., Hampton M. D. Hydrogen sensors for hydrogen transport. Collection of abstracts Conference EuroSun 2004 and 14sup>th</sup> International ForumSun (14 Internationales Sonnenforum of DGS e. V.) – June 20-23, 2004 (Freiburg, Germany) and Intersolar 2004, June 24-26, 2004 (Freiburg, Germany). Germany.

58. Gusev A. L., Kudelkina E. V., Chaban P. A., Ivkin A.V., Hampton M. D., Veziroglu T. N. Unified stand «Edelweiss-001» for testing sensors of hydrogen transport. Collection of abstracts Conference EuroSun 2004 and 14sup>th</sup> International ForumSun (14 Internationales Son- nenforum of DGS e. V.) – June 20-23, 2004 (Freiburg, Germany) and Intersolar 2004, June 24-26, 2004 (Freiburg, Germany).

59. Garelina S. A., Gusev A. L., Zakharyan R. A., Kazaryan M. A., Feofanov I.N. Evaluation of the perspective of application of the new gas analyzer «Megakon 10k» in emercom of Russia // International scientific journal Alternative energy and ecology. – 2014. – No. 22. – P. 46.

60. Patent for invention RUS 2389992 28.01.2009. Method for determining local and integrated leakage of products and device for its implementation. Gusev A. L., Zababurkin D. I., Kondyrina T. N., Nemyshev V. N.

61. Patent for invention RUS 2390008 06.10.2008 Gusev A. L., Zababurkin D. I., Popkova V. Ya., Dobrovolsky Yu. A. Gasalarm.

62. Gusev A. L., Zababurkin D. I. Multi-channel leak detectors for monitoring the level of combustible, toxic and explosive gases // International scientific journal Alternative energy and ecology. – 2010. – No. 10. – pp. 10-15.

63. Gusev A. L., Zababurkin D. I. Highly sensitive sensors for special applications. // International scientific journal Alternative energy and ecology. – 2010. – No. 10. – pp. 23-30.

64. Zababurkin D. I., Gusev A. L., Nemyshev V. I. Hydrogen leak detectors and leak indicators // International scientific journal Alternative energy and ecology. – 2010. – No. 6. – pp. 33-42.

65. Patent for invention RUS 2368882 21.04.2008. Explosive hydrogen sensor. Gusev A. L., Gudilin E. A., Dobrovolsky Yu. A., Nemyshev V. I., Gusakov V. I.

66. Patent for invention RUS 2371708 05.05.2008. Gusev A. L., Gudilin E. A., Dobrovolsky Yu. A., Kondyrina T. N. Explosive hydrogen sensor.

67. Patent for invention RUS 2371710 21.07.2008. Hydrogen gas analyzer. Gusev A. L., Gudilin E. A., Dobrovolsky Yu. A., Nemyshev V. N., Kondyrina T. N., Zababurkin D. I.

68. Patent for invention RUS 2375790 21.07.2008. Piezoresonance hydrogen sensor. Gusev A. L., Gudilin E. A., Dobrovolsky Yu. A., Zababurkin D. I.

69. Gusev A. L., Zababurkin D. I., Nemyshev V. N. Hydrogen meter. Utility model patent RUS 84988 03.03.2009.

70. Patent for invention RUS 2362991 03.03.2008. Method for measuring hydrogen content in cryogenic vacuum thermal insulation. Penkov M. M., Naumchik I. V., Vedernikov M. V., Gribakin V. A., Gusev A. L.

71. Galinov I. V., Gladkov V. S., Gusev A. L., Zababurkin D. I. A Method for calibrating hydrogen sensors by the pressure chamber method // Alternative energy and ecology. – 2009. – No. 11. – pp. 25-29.

72. Babkina I. V., Gabriels K. S., Gusev A. L., Kalinin Yu. E., Kondrat’eva N. A., Sitnikov A. V., Kushchev S. Structure, electric and gas sensitive properties of nano-crystalline film composites based on IN-Y-O-C. // Alternative Energy and Ecology. – 2009. – No. 8. – pp. 58-66.

73. Gusev A. L., Naumchik I. V., Penkov M. M. Choice of conditions for application of metal oxide detectors of hydrogen in systems of control of the gas medium of cryogenic hydrogen complexes // Proceedings of the St. Petersburg State University of Low Temperature and Food Technologies. – 2009. – No. 1. – pp. 65-69.

74. Gusev A. L. Universal scientific research complex «CLEOPATRA». //Alternative energy and ecology. – 2008. – No. 4. – pp. 114-121.


Review

For citations:


Mikheev P.Yu., Fedorov M.P., Chusov A.N., Politaeva N.A. Determination of the energy efficiency of the life cycles of wind farms by aggregated data of energy costs. Alternative Energy and Ecology (ISJAEE). 2024;(4):25-41. https://doi.org/10.15518/isjaee.2024.04.025-041

Views: 82


ISSN 1608-8298 (Print)