Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Development and justification of a hydrogen-in-oxygen combustion system using recirculation based on an experimental study

https://doi.org/10.15518/isjaee.2024.05.051-067

Abstract

Strategy for energy development of Russia for the period up to 2035 provides for the participation of nuclear power plants with generation 3+ power units in regulating the daily unevenness of the electrical load, which forces the nuclear power plant to operate in an ineffective unloading mode. In order to solve this problem, the combination of a nuclear power plant with a hydrogen energy complex is being considered, when during the hours of expected unloading of the nuclear power plant due to the electrolysis of water, unclaimed power is converted into hydrogen and oxygen, and during peak load hours, hydrogen is burned in an oxygen environment in order to heat/overheat the working fluid in the steam turbine cycle and peak power generation. At the same time, the safety issues of using hydrogen when burned in oxygen are of great importance, which is, first of all, due to the inevitable presence of a certain amount of chemical underburning, which creates the risk of the formation of an explosive hydrogen-oxygen mixture along the working fluid path in the steam turbine cycle of a nuclear power plant. Based on the existing experience of the authors, a method for assessing the underburning of hydrogen and an indicator of the efficiency of recirculation in the proposed scheme using the recirculation of unreacted hydrogen have been developed; a theoretical assessment of the underburning of hydrogen has been previously performed. In addition, a small-scale experimental installation has been developed that allows simulating the conditions of combustion of hydrogen in oxygen with recirculation of unreacted hydrogen under the conditions of the steam turbine cycle of a nuclear power plant. This work represents a new approach to solving the problem of the safe use of hydrogen. The developed method makes it possible to determine specific concentrations of unreacted hydrogen depending on the flow rate and pressure in the flame tube. Based on the proposed indicator of recirculation efficiency, it is shown that the proportion of hydrogen entrainment due to its low solubility in water is very small, which, at the accepted pressure and temperature of recycled unreacted hydrogen, determines a sufficiently high indicator of recirculation efficiency. As a preliminary theoretical assessment has shown, the magnitude of the recirculation efficiency depends on the pressure and temperature at which unreacted hydrogen is recycled, which will obviously require further assessments over a wider range of pressures and temperatures. The proposed experimental methodology will make it possible to perform a reasonable assessment of the recirculation efficiency of unreacted hydrogen for conditions of additional heating of feedwater in the steam turbine cycle of a nuclear power plant.

About the Authors

A. N. Egorov
Yuri Gagarin State Technical University of Saratov; Federal Research Center «Saratov Scientific Center» RAS
Russian Federation

 Egorov Aleksandr Nicolaevich -  Ph.D. in Engineering, Senior Researcher at Institution

 Scopus Author ID: 56343107200; Research ID: B-7899-2015 

 410054, Saratov, st. Politekhnicheskaya, 77. Tel.: (845-2) 99-86-03, fax (845-2) 99-86-04 

410028, Russia, Saratov, st. Rabochaya, 24. Tel.: (845-2)27-14-36, (845-2) 23-45-10; 



A. N. Bayramov
Yuri Gagarin State Technical University of Saratov; Federal Research Center «Saratov Scientific Center» RAS
Russian Federation

Bairamov Artem Nicolaevich -  Department of Energy Problems of SSC RAS: senior researcher;   candidate of technical science 

Scopus Author ID: 35224451800; Research ID: P-6565-2017 

410054, Saratov, st. Politekhnicheskaya, 77. Tel.: (845-2) 99-86-03, fax (845-2) 99-86-04 

 410028, Russia, Saratov, st. Rabochaya, 24. Tel.: (845-2)27-14-36, (845-2) 23-45-10; 



A. I. Schastlivtsev
Yuri Gagarin State Technical University of Saratov; Joint Institute of High Temperatures RAS
Russian Federation

Schastlivtcev Aleksey Ivanovich - senior researcher;  candidate of technical science

 Scopus Author ID: 36773660300; Research ID: D-7385-2014 

410054, Saratov, st. Politekhnicheskaya, 77. Tel.: (845-2) 99-86-03, fax (845-2) 99-86-04 

 125412, Russia, Moscow, st. Izhorskaya, 13, building 2. Tel.: (495) 485-8244, (495) 485-9009 



References

1. Энергетическая стратегия России на период до 2035 г. Правительство Российской Федерации. Москва, 2020. – 79с.

2. Стандарт организации ОАО «СО ЕЭС». Нормы участия энергоблоков атомных электростанций в нормированном первичном регулировании частоты. ОАО «СО ЕЭС», 2013.

3. Aminov R. Z., Egorov A. N., Bayramov A. N. Assessment of the systemic efficiency of an NPP base load supply based on combination with hydrogen technologies // International Journal of Hydrogen Energy. – 2023. – V. 48. I. 87. – pp. 33996-34008.

4. Аминов Р. З. Егоров А. Н., Байрамов А. Н. Оценка эффективности участия АЭС в покрытии пиковых электрических нагрузок на основе водородных технологий // Теплоэнергетика. – 2024. –№ 2. – С. 1-18.

5. Юрин В. Е., Егоров А. Н. Прогнозная экономическая эффективность комбинирования АЭС с автономным водородным энергокомплексом // Альтернативная энергетика и экология (ISJAEE). – 2019. – № 13-15. – С. 40-51.

6. Байрамов А. Н. Оценка эффективности перспективных вариантов схем комбинирования АЭС с водородным комплексом // Энергетик. – 2023. – № 2. – С. 8-13.

7. Bayramov A. N. Comprehensive assessment of system efficiency and competitiveness of nuclear power plants in combination with hydrogen complex // International Journal of Hydrogen Energy. – 2023. – V. 48. I. 70. – pp. 27068-27078.

8. Аминов Р. З., Байрамов А. Н. Оценка системной эффективности АЭС в комбинировании с водородным энергетическим комплексом // Известия РАН. – Энергетика. – 2019. – № 1. – С. 70-81.

9. Aminov R. Z., Bairamov A. N., Garievskii M. V. Assessment of the Performance of a Nuclear-Hydrogen Power Generation System // Thermal Engineering. – 2019. – V. 3. I. 66. – pp. 196-209.

10. Аминов Р. З., Егоров А. Н. Проблемы и пути обеспечения неравномерного электропотребления в условиях растущей доли АЭС в энергосистемах. – М.: Наука, 2020. – 271с.

11. Аминов Р. З., Байрамов А. Н. Комбинирование водородных энергетических циклов с атомными электростанциями. – М.: Наука, 2016. – 254 с.

12. Байрамов А. Н. Разработка научных основ повышения эффективности АЭС при комбинированиис водородным комплексом: дисс. на соискание ученой степени докт. техн. наук: 05.14.01. – Саратов: СГТУ, 2022. – 397 с.

13. Peschka W. Hydrogen combustion in tomorrow’s energy technology // International Journal of Hydrogen Energy. – 1987. – V. 12. – № 10. – pp. 481-499.

14. Sternfeld H. J., Heinrich P. A. Demonstration plant for the hydrogen/oxygen spinning reserve // International Journal of Hydrogen Energy. – 1989. – V. 14. I. 10. – pp. 703-716.

15. Fröhlke K., Haidn O. J. Spinning reserve system based on H2/O2 combustion // Energy Convers. Mgmt. – 1997. – V. 38. I. 10-13. – pp. 983-993.

16. Haidn O. J., Fröhlke K., Carl J., Weingartner S. Improved combustion efficiency of a H2/O2 steam generator for spinning reserve application // International Journal of Hydrogen Energy. – 1998. – V. 23. I. 6. – pp. 491-497.

17. Tanneberger T. Combustion efficiency measurements and burner characterization in a hydrogen-oxygen fuel combustor // International Journal of Hydrogen Energy. – 2019. – V. 44. I. 56. – pp. 29752-29764.

18. Haller J. Link T. Thermodynamic concept for an efficient zero-emission combustion of hydrogen and oxygen in stationary internal combustion engines with high power density // International Journal of Hydrogen Energy. – 2017. – V. 42. I. 44. – pp. 27374-27387.

19. Kuznetsov M., Grune J. Experiments on combustion regimes for hydrogen/air mixtures in a thin layer geometry // International Journal of Hydrogen Energy. – 2019. – V. 44. I. 17. – pp. 8727-8742.

20. Бебелин И. Н. Разработка и исследование экспериментального водород-кислородного парогенератора мощностью 10 МВт (т) // Теплоэнергетика. – 1997. – № 8. – С. 48-52.

21. Малышенко С. П., Пригожин В. И., Савич А. Р., Счастливцев А. И., Ильичев В. А., Назарова О. В. Эффективность генерации пара в водороднокислородных парогенераторах мегаваттного класса мощности // Теплофизика высоких температур. – 2012. – T. 50. – № 6. – С. 820-829.

22. Прибатурин Н. А. Экспериментальное исследование процесса горения смесей водородкислород и метан-кислород в среде слабоперегретого водяного пара // Теплоэнергетика. – 2016. – № 5. – С. 31-36.

23. Lu Q. Hetero-homogeneous combustion of premixed hydrogen-oxygen mixture in a micro-reactor with catalyst segmentation // International Journal of Hydrogen Energy. – 2016. – V. 41. I. 28. – pp. 12387-12396.

24. Huang F., Kong W. Effects of hydrogen addition on combustion characteristics of a free-piston linear engine with glow-assisted ignition // International Journal of Hydrogen Energy. – 2021. – V. 46. I. 44. – pp. 23040-23052.

25. Tang G. Experimental investigation of premixed combustion limits of hydrogen and methane additives in ammonia // International Journal of Hydrogen Energy. – 2021. – V. 46. I. 39. – pp. 20765-20776.

26. Wang Y., Zhou X., Liu L. Theoretical investigation of the combustion performance of ammonia/hydrogen mixtures on a marine diesel engine // International Journal of Hydrogen Energy. – 2021. – V. 46. I. 27. – pp. 14805-14812.

27. Zhu H. Effect of excess hydrogen on hydrogen fueled internal combustion engine under full load // International Journal of Hydrogen Energy. – 2020. – V. 45. I. 39. – pp. 20419-20425.

28. Yu X. Effects of hydrogen direct injection on combustion and emission characteristics of a hydrogen/Acetone-Butanol-Ethanol dual-fuel spark ignition engine under lean-burn conditions // International Journal of Hydrogen Energy. – 2020. – V. 45. I. 58. – pp. 34193-34203.

29. Wang D. Numerical study of the premixed ammonia-hydrogen combustion under engine-relevant conditions // International Journal of Hydrogen Energy. – 2021. – V. 46. I. 2. – pp. 2667-2683.

30. Shanga W. Effect of exhaust gas recirculation and hydrogen direct injection on combustion and emission characteristics of a n-butanol SI engine // International Journal of Hydrogen Energy. – 2020. – V. 45. I. 35. – pp. 17961-17974.

31. Wang J. Numerical investigation of water injection quantity and water injection timing on the thermo-dynamics, combustion and emissions in a hydrogen enriched lean-burn natural gas SI engine // International Journal of Hydrogen Energy. – 2020. – V. 45. I. 35. – pp. 17935-17952.

32. Yu X. A comparative study on effects of homogeneous or stratified hydrogen on combustion and emissions of a gasoline/hydrogen SI engine // Inter-national Journal of Hydrogen Energy. – 2019. – V. 44. I. 47. – pp. 25974-25984.

33. Shi B. Rapidly mixed combustion of hydrogen/oxygen diluted by N2 and CO2 in a tubular flame combustor // International Journal of Hydrogen Energy. – 2018. – V. 43. I. 31. – pp. 14806-14815.

34. Metrow C., Gray S., Ciccarelli G. Detonation propagation through a nonuniform layer of hydrogenoxygen in a narrow channel // International Journal of Hydrogen Energy. – 2021. – V. 46. I. 41. – pp. 21726-21738.

35. Yapicioglu A., Dincer I. Performance assessment of hydrogen and ammonia combustion with various fuels for power generators // International Journal of Hydrogen Energy. – 2018. – V. 43. I. 45. – pp. 21037-21048.

36. Zhang F. Characterising premixed ammonia and hydrogen combustion for a novel Linear Joule Engine Generator // International Journal of Hydrogen Energy. – 2021. – V. 46. I. 44. – pp. 23075-23090

37. Ramsay C. J. A numerical study on the effects of constant volume combustion phase on performance and emissions characteristics of a diesel-hydrogen dual fuel engine // International Journal of Hydrogen Energy. – 2020. – V. 45. I. 56. – pp. 32598-32618.

38. Mashruk S., Xiao H., Valera-Medina A. Rich-Quench-Lean model comparison for the clean use of humidified ammonia/hydrogen combustion systems // International Journal of Hydrogen Energy. – 2021. – V. 46. I. 5. – pp. 4472-4484.

39. Valera-Medina A. Premixed ammonia/hydrogen swirl combustion under rich fuel conditions for gas turbines operation // International Journal of Hydrogen Energy. – 2019. – V. 44. I. 16. – pp. 8615-8626.

40. Zhao Y., McDonell V., Samuelsen S. Assessment of the combustion performance of a room furnace operating on pipeline natural gas mixed with simulated bio-gas or hydrogen // International Journal of Hydrogen Energy. – 2020. – V. 45. I. 19. – pp. 11368-11379.

41. Zhao Y., McDonell V., Samuelsen S. Influence of hydrogen addition to pipeline natural gas on the combustion performance of a cooktop burner // International Journal of Hydrogen Energy. – 2019. – V. 44. I. 23. – pp. 12239-12253.

42. Zhao Y., McDonell V., Samuelsen S. Experimental assessment of the combustion performance of an oven burner operated on pipeline natural gas mixed with hydrogen // International Journal of Hydrogen Energy. – 2019. – V. 44. I. 47. – pp. 26049-26062.

43. Nik M. H., AbuMansor M. R., Faizal W. M. Wan Mahmood Simulation of the combustion process for a CI hydrogen engine in an argon-oxygen atmosphere // International Journal of Hydrogen Energy. – 2018. – V. 43. I. 24. – pp. 11286-11297.

44. Riahi Z. Combustion with mixed enrichment of oxygen and hydrogen in lean regime // International Journal of Hydrogen Energy. – 2017. – V. 42. I. 13. – pp. 8870-8880.

45. Аминов Р. З., Счастливцев А. И., Байрамов А. Н. Экспериментальная оценка доли непрореагировавшего водорода при сжигании в среде кислорода // Альтернативная энергетика и экология. – 2020. – № 7-18 (330-341). – С. 68-79.

46. Aminov R. Z., Schastlivtsev A. I., Bayramov A. N. Experimental Evaluation of the Composition of the Steam Generated during Hydrogen Combustion in Oxygen // High Temperature. – 2020. – V. 58. I. 3. – pp. 410-416.

47. Aminov R. Z., Schastlivtsev A. I., Bayramov A. N. Experimental results of the study of underburned hydrogen during burning in oxygen medium // International Journal of Hydrogen Energy. – 2022. – V. 47. I. 65. – pp. 28176-28187.

48. Пат. 2758644 Российская Федерация, МПК G 21D 5/16, F22B 1/26. Система сжигания водорода в кислороде в закрученном потоке повышенной безопасности с использованием ультравысокотемпературных керамических материалов для перегрева рабочего тела в паротурбинном цикле атомной электрической станции. Байрамов А. Н. 01.11.2021. Бюл. № 31.

49. Аминов Р. З., Егоров А. Н. Оценка технико-экономической эффективности замкнутого водородного цикла на АЭС // Альтернативная энергетика и экология (ISJAEE). – 2019. – № 10-12. – С. 23-35. DOI: 10.15518/isjaee.2019.10-12.023-035

50. Пат. РФ № 2709783 Российская Федерация, Способ водородного подогрева питательной воды на АЭС. Аминов Р. З., Егоров А. Н. 20.12.2019.

51. Варгафтик Н. Б. Справочник по теплофизическим свойствам газов и жидкостей. – М.: Наука, 1972. – 432 с.

52. Бараненко В. И., Киров В. С. Растворимость водорода в воде в широком диапазоне температуры и давления // Атомная энергия. – 1989. – Том 66. Вып. 1. – С. 24-28.

53. ООО «Принцип-Сервис». Оборудование для очистки воды. [Электронный ресурс]. Режим доступа: https://prp-servis.ru/uslugi/Aeracija


Review

For citations:


Egorov A.N., Bayramov A.N., Schastlivtsev A.I. Development and justification of a hydrogen-in-oxygen combustion system using recirculation based on an experimental study. Alternative Energy and Ecology (ISJAEE). 2024;(5):51-67. (In Russ.) https://doi.org/10.15518/isjaee.2024.05.051-067

Views: 57


ISSN 1608-8298 (Print)