Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Переработка отходов возобновляемой энергетики

https://doi.org/10.15518/isjaee.2024.05.068-092

Аннотация

К 2050 году в мире будет накоплено до 60-70 млн тонн отслуживших фотоэлектрических модулей (ФЭМ), 43,4 млн тонн лопастей ВЭУ и до 1 млн тонн литиевых аккумуляторов. Существующие технологии и производственные мощности не способны переработать данные объемы, поскольку готовность большинства используемых технологий оценивается как TRL3 – TRL8 и их экономическая эффективность ниже уровня рентабельности. Целью данной работы является обоснование необходимости и расчет величины государственной поддержки для развития технологий переработки отходов ВИЭ. Определено, что величина экономических потерь, при отсутствии переработки, к 2050 году составит до 215 млрд долл., в том числе по регионам-лидерам ВИЭ: в Китае 81 млрд долл., в ЕС 42 млрд долл., в США 26 млрд долл. Показано региональное распределение объема отходов с группировкой по уровню цен на электроэнергию: 30% отходов в странах с наивысшими тарифами на энергию, преимущественно в Европе, 20% в регионах со средней ценой, включая всю Северную Америку, 50% в регионах с минимальной ценой – большинство стран Азии. Получена динамика прироста количества патентов по выбранным МПК за период 2000-2024, определены страны-лидеры. Показано, что эффект от господдержки переработки будет получен в двух отраслях: во-первых, сформируется экономически эффективная отрасль переработки отходов ВИЭ, во-вторых, увеличится доступность дефицитных материалов для производителей ВИЭ.

Об авторах

О. В. Жданеев
Высшая нефтяная школа ФГБОУ ВО «Югорский государственный университет»; Кафедра стратегического предпринимательства и инноваций ФГБОУ ВО «Российская академия народного хозяйства и государственной службы при Президенте Российской Федерации»; ФГБУН Институт нефтехимического синтеза им. А. В. Топчиева Российской академии наук
Россия

Жданеев Олег Валерьевич -  ведущий научный сотрудник,   Профессор высшей нефтяной школы, доктор технических наук  

628011, Российская Федерация, г. Ханты-Мансийск, ул. Чехова, 16

119571, г. Москва, вн. тер. г. муниципальный округ Тропарево-Никулино, проспект Вернадского, д. 82, стр. 1 

119991, ГСП-1, Москва, Ленинский проспект, 29 



Т. В. Алешкевич
АО «Центр эксплуатационных услуг»
Россия

Алешкевич Татьяна Владимировна - руководитель проекта 

121099, Москва, Новинский бульвар, 13/4



Список литературы

1. Khakimov R., Moskvin A., Zhdaneev O. Hydrogen as a key technology for long-term & seasonal energy storage applications. International Journal of Hydrogen Energy. 2024; 68:374–381 https://doi.org/10.1016/j.ijhydene.2024.04.066

2. Gielen D., Taibi E., Miranda R. Hydrogen: A renewable energy perspective. 2019. ISBN: 978-92-9260-151-5.

3. Safyari M., Rauscher A., Ucsnik S., Moshtaghi M. Hydrogen trapping and permeability in carbon fiber reinforced aluminum alloys. International Journal of Hydrogen Energy. 2023. 50. 10.1016/j.ijhydene. – 2023.09.206.

4. Liu H, Wang C, Chen B, Zhang Z. A further study of pyrolysis of carbon fibre-epoxy composite from hydrogen tank: Search optimization for kinetic parameters via a Shuffled Complex Evolution. Journal of Hazardous Materials. – 2019 374. 10.1016/j.jhazmat. – 2019.03.100.

5. Carlotta-Jones D., Purdy K., Kirwan K., Stratford J., Coles S. Improved hydrogen gas production in microbial electrolysis cells using inexpensive recycled carbon fibre fabrics. Bioresource technology. – 2020. 304. 122983. 10.1016/j.biortech.2020.122983.

6. International Renewable Energy Agency. Green hydrogen: a key enabler to broaden the potential of renewable power solutions in hard-to-abate sectors. IRENA. – 2023. Availavle at https://www.irena.org/News/articles/2023/Sep/Green-hydrogen-a-key-enablerto-broaden-the-potential-of-renewable-power-solutions

7. Жданеев О. В. Развитие ВИЭ и формирование новой энергополитики России. Энергетическая политика. – 2020. – 2(144). – 84-95. DOI 10.46920/2409-5516_2020_2144_84

8. Perera S., Putrus G., Conlon M., Narayana M., Sunderland K. Wind Energy Harvesting and Conversion Systems: A Technical Review. Energies. – 2022; 15. 9299. 10.3390/en15249299.

9. Berger A., Fischer D., Lema R., Schmitz H., Urban F. China–Europe Relations in Climate Change Mitigation: A Conceptual Framework. Journal of Current Chinese Affairs. – 2013; 1:71-98. 10.2139/ssrn.2024848.

10. Statistical Review of World Energy 2021. 70th edition. BP. Available online at https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf

11. International Renewable Energy Agency. Electricity Generation and Capacity by Region. https://www.irena.org/Data/View-data-by-topic/EnergyTransition/REmap-Energy-Generation-and-Capacity

12. Material and Resource Requirements for the Energy Transition. Energy Transitions Commission. Report. – 2023. – p. 10

13. Statista. Worldwide number of battery electric vehicles in use from 2016 to 2022. Statista Inc; 2024. Available at https://www.statista.com/statistics/270603/worldwide-number-of-hybrid-and-electric-vehiclessince-2009/

14. International Renewable Energy Agency. Transport. https://www.irena.org/Energy-Transition/Technology/Transport

15. Qureshi J. A Review of Recycling Methods for Fibre Reinforced Polymer Composites. Sustainability 2022; 14, 16855. https://doi.org/10.3390/su142416855

16. Karuppannan Gopalraj S., Kärki T. A review on the recycling of waste carbon fibre/glass fibrereinforced composites: fibre recovery, properties and life-cycle analysis. SN Appl. Sci. – 2020; 2, 433. https://doi.org/10.1007/s42452-020-2195-4

17. Maani T., Celik I., Heben M. J., Ellingson R. J., Apul D. Environmental impacts of recycling crystalline silicon (c-SI) and cadmium telluride (CDTE) solar panels. Science of The Total Environment. – 2020; 735.138827, ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv. – 2020.138827.

18. Chen W., Chen J., Bets K., Salvatierra R., Wyss K., Gao G et al. Battery metal recycling by flash Joule heating. Science Advances. – 2023; 9. 10.1126/sciadv.adh5131.

19. Walunj A., Jatar N., Pandey V., Ghongade A., Sawant P. A Review of Recycling Methods for Crystalline Silicon Solar Panels. International Journal of Engineering Research & Technology (IJERT). – 2022; 11:04 http://www.ijert.org ISSN: 2278-0181.

20. Stallmeister C., Friedrich B. Efficient Lithium Recovery from End-of-Life Batteries in Pyrometallurgical Recycling Processes by Early-Stage Separation from Black Mass. RWTH/Aachen University. – 2023. 10.13140/RG.2.2.33725.44008.

21. Bhar M., Ghosh S., Krishnamurthy S., Kaliprasad Y., Martha S. A review on spent lithium-ion battery recycling: from collection to black mass recovery. RSC Sustainability. – 2023; 1.10.1039/d3su00086a.

22. Ardente F., Latunussa C. -E. -L., Blengini G. A. Resource efficient recovery of critical and precious metals from waste silicon PV panel recycling. Waste Management. – 2019; 91:156-167. ISSN 0956-053X. https://doi.org/10.1016/j.wasman.2019.04.059.

23. Liu P., Barlow C. Wind turbine blade waste in 2050. Waste Management. – 2017; 62:229–240. DOI:10.17863/CAM.9257

24. International Energy Agency. Net Zero by 2050. A Roadmap for the Global Energy Sector. – 2021. Available at https://www.iea.org/reports/net-zeroby-2050

25. Heimes H., Kampker A., Offermanns C., Klohs D., Soldan Cattani N., Elliger T., Kwade A., Ahuis M., Michaelis S., Rottnick K. Recycling of Lithium-Ion Batteries (2nd edition). – 2023. PEM RWTH Aachen University & VDMAISBN: 978-3-947920-43-3

26. Richa K., Babbitt C., Gaustad G., Wang X. A future perspective on lithium-ion battery waste flows from electric vehicles. Resources, Conservation and Recycling. – 2014; 83.63-76. 10.1016/j.resconrec.2013.11.008.

27. Romare M., Dahllöf L. The Life Cycle Energy Consumption and Greenhouse Gas Emissions from Lithium-Ion Batteries. A Study with Focus on Current Technology and Batteries for light-duty vehicles. IVL Swedish Environmental Research Institute. Report number. – C. 243. ISBN 978-91-88319-60-9

28. The National Development and Reform Commission of the People’s Republic of China and other agencies for the promotion of decommissioned power plants. Guiding opinions on the disposal of renewable energy equipment. Development and reform of environmental resources. – 2023. – № 1030. Available at https://www.ndrc.gov.cn/xxgk/zcfb/tz/202308/t20230817_1359879.html

29. Gonçalves R. -M., Martinho A., Oliveira J. -P. Recycling of Reinforced Glass Fibers Waste: Current Status. Materials (Basel). – 2022; 15(4):1596. doi: 10.3390/ma15041596. PMID: 35208135; PMCID: PMC8876600.

30. Holzer A., Windisch-Kern S., Ponak C., Raupenstrauch H. A Novel Pyrometallurgical Recycling Process for Lithium-Ion Batteries and Its Application to the Recycling of LCO and LFP. Metals. – 2021; 11:149. https://doi.org/10.3390/met11010149

31. Andreev M. [et al.] Flame-made La2О3-based nanocomposite CO2 sensors as perspective part of GHG monitoring system. Sensors. – 2021; 21: – DOI 10.3390/s21217297

32. International Renewable Energy Agency. Endof-Life Management. Solar Photovoltaic Panels. 2016. https://www.irena.org/publications/2016/Jun/End-of-lifemanagement-Solar-Photovoltaic-Panels

33. Lunardi M. -M., Alvarez-Gaitan J. -P., Bilbao J. -I., Corkish R. -A. Review of Recycling Processes for Photovoltaic Modules. InTech. – 2018; doi: 10.5772/intechopen.74390

34. Paulsen E. B., Enevoldsen P. A Multidisciplinary Review of Recycling Methods for Endof-Life Wind Turbine Blades. Energies. – 2021; 14, 4247. https://doi.org10.3390//en14144247

35. Mishnaevsky Jr. L. Recycling of wind turbine blades: Recent developments. Current Opinion in Green and Sustainable Chemistry. – 2023; 39, 100746, ISSN 2452-2236. https://doi.org/10.1016/j.cogsc.2022.100746.

36. Dias P. -R., Schmidt L., Chang N. -L., Lunardi M. -M., Deng R., Trigger B., et al. High yield, low cost, environmentally friendly process to recycle silicon solar panels: Technical, economic and environmental feasibility assessment. Renewable and Sustainable Energy Reviews. – 2022;169. 112900, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2022.112900.

37. Wei Y., Hadigheh S. -A. Development of an innovative hybrid thermo-chemical recycling method for CFRP waste recovery. Composites Part B: Engineering. – 2023; 260. 110786, ISSN 1359-8368, https://doi.org/10.1016/j.compositesb.2023.110786.

38. Muzyka R., Sobek S., Korytkowska-Wałach A., Drewniak Ł., Sajdak M. Recycling of both resin and fibre from wind turbine blade waste via small moleculeassisted dissolution. Scientific Reports 2023;13.10.1038/s41598-023-36183-4.

39. Markert E., Celik I., Apul D. Private and Externality Costs and Benefits of Recycling Crystalline Silicon (c-Si) Photovoltaic Panels. Energies. – 2020; 13.3650. 10.3390/en13143650.

40. Tao Y., Hadigheh S. -A., Wei Y. Recycling of glass fibre reinforced polymer (GFRP) composite wastes in concrete: A critical review and cost benefit analysis. Structures 2023; 53:1540-1556. ISSN 2352-0124, https://doi.org/10.1016/j.istruc.2023.05.018.

41. Baea H., Kim Y. Technologies of lithium recycling from waste lithium ion batteries: a review. Materials Advances. Issue 10. – 2021. DOI: 10.1039/d1ma00216c

42. Gianvincenzi M., Mosconi E., Marconi M., Tola F. Battery Waste Management in Europe: Black Mass Hazardousness and Recycling Strategies in the Light of an Evolving Competitive Regulation. – 2023. 10.20944/preprints202312. 1988. v1.

43. SGRE. Материальный паспорт ВЭУ модель B45.

44. Vestas. Материальный паспорт ВЭУ модель V47.

45. LM WindPower. Материальный паспорт ВЭУ модель LM 37.3 P2.

46. Vidyanandan K. V. Batteries for Electric Vehicles. Energy Scan: A House e-Journal of Corporate Planning, NTPC Ltd. – 2019; I: no. 38, New Delhi

47. Woeste R., Drude E. -S., Vrucak D., Klöckner K., Rombach E., Letmathe P., Friedrich B. A technoeconomic assessment of two recycling processes for black mass from end-of-life lithium-ion batteries. Applied Energy. – 2024; 361: 122921. ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2024.122921.

48. Krauklis A., Karl C., Gagani A., Jørgensen J. Composite Material Recycling Technology – Stateof-the-Art and Sustainable Development for the 2020s. Journal of Composites Science. – 2021; 5.28. 10.3390/jcs5010028.

49. Rouholamin D., Shyng Y. -T., Savage L., Ghita O. A Comparative Study into Mechanical Performance of Glass Fibres Recovered Through Mechanical Grinding and High Voltage Pulse Power Fragmentation. European Conference on Composite Materials, Seville, Spain, 22-26 June 2014.

50. Cheng G., Yang S., Wang X., Guo Z., Cai M. Study on the recycling of waste wind turbine blades. Journal of Engineering Research. – 2023; 100070, ISSN 2307-1877. https://doi.org/10.1016/j.jer.2023.100070.

51. Vo Dong P. -A., Azzaro-Pantel C., Boix M., Jacquemin L., Domenech S. Modelling of Environmental Impacts and Economic Benefits of Fibre Reinforced Polymers Composite Recycling Pathways. Computer Aided Chemical Engineering. – 2015; 37.2009-2014. ISSN 1570-7946: https://doi.org/10.1016/B978-0-444-63576-1.50029-7.

52. International Energy Agency. World Energy Outlook 2023. Available at https://www.iea.org/reports/world-energy-outlook-2023

53. Zhuang W. -Q., Fitts J. P, Ajo-Franklin C. M., Maes S., Alvarez-Cohen L., Hennebel T. Recovery of critical metals using biometallurgy. Current Opinion in Biotechnology. – 2015; 33:327-335. ISSN 0958-1669. https://doi.org/10.1016/j.copbio.2015.03.019.

54. Meticulousresearch. Black Mass Recycling Market by Battery Source (Automotive Batteries, Industrial Batteries), Battery Type (Li-ion Battery, Nickel–metal Hydride Battery), Recycling Process (Pyrometallurgical Process, Hydrometallurgical Process) – Global Forecast to 2030. Report ID: MRSE – 1041042 Pages: 300 Nov-2023. Available at https://www.meticulousresearch.com/product/black-mass-recycling-market-5725#description

55. Zhdaneev O. V., Frolov K. N, Kryukov V. A., Yatsenko V. A. Rare earth permanent magnets in Russia’s wind power. Materials Science for Energy Technologies. – 2024; 7:107-114 DOI: 10.1016/j.mset.2023.07.007

56. Zhdaneev O. V., Petrov I. Y., Seregina A. A. Rare and rare-earth metals industry development in Russia and its influence on fourth world energy transition. Non-ferrous metals. – 2021; 51:2.3-8. DOI 10.17580/nfm.2021.02.01

57. Петров А. В., Дориомедов М. С., Скрипачев С. Ю. ТЕХНОЛОГИИ УТИЛИЗАЦИИ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ (ОБЗОР). – 2015. dx.doi.org/10.18577/2307-6046-2015-0-8-9-9

58. Богачева О. В., Смородинов О. В. Инструменты финансовой поддержки НИОКР и уровни готовности технологий. Финансовый журнал. – 2021. – Т. 13, 6:8–24. https://doi.org/10.31107/2075-1990-2021-6-8-24.

59. Zhdaneev O. V., Ovsyannikov I. R. Influence of External Factors on Innovation Activity of Fuel and Energy Companies. Studies on Russian Economic Development. – 2024; 35(2):208 214. DOI: 10.47711/0868-6351-203-73-82

60. Zhdaneev O. V., Frolov K. N. Technological and institutional priorities of the oil and gas complex of the Russian Federation in the term of the world energy transition. International Journal of Hydrogen Energy. 2024; 58:1418-1428. https://doi.org/10.1016/j.ijhydene.2024.01.285

61. Zhdaneev O. V. Technological sovereignty of the Russian Federation fuel and energy complex. Journal of Mining Institute. – 2022; 258:1061-1070. DOI: 10.31897/PMI.2022.107

62. Galitskaya E, Zhdaneev O. DEVELOPMENT OF ELECTROLYSIS TECHNOLOGIES FOR HYDROGEN PRODUCTION: A CASE STUDY OF GREEN STEEL MANUFACTURING IN THE RUSSIAN FEDERATION. ENVIRONMENTAL TECHNOLOGY AND INNOVATION 2022;27.102517, eISSN: 2352-1864. DOI: 10.1016/j.eti.2022.102517.

63. National Renewable Energy Laboratory. Environmental and Circular Economy Implications of Solar Energy in a Decarbonized U.S. Grid. – 2022. Available online at https://www.nrel.gov/docs/fy22osti/80818.pdf

64. Coccia M. Public and private R&D investments as complementary inputs for productivity growth. Int. J. Technology, Policy and Management. – 2010; 10:73-91.

65. Kuznetsova T., Zaichenko S. R&D Funding Tools: Context and Application Within Global and Russian Practices. National Research University Higher School of Economics. Institute for Statistical Studies and Economics of Knowledge. WP BRP 124/STI/2022.

66. Богачева О. В., Смородинов О. В. Актуальные вопросы организации государственного финансирования НИОКР в странах ОЭСР. DOI: 10.31107/2075-1990-2019-2-37-50


Рецензия

Для цитирования:


Жданеев О.В., Алешкевич Т.В. Переработка отходов возобновляемой энергетики. Альтернативная энергетика и экология (ISJAEE). 2024;(5):68-92. https://doi.org/10.15518/isjaee.2024.05.068-092

For citation:


Zhdaneev O.V., Aleshkevich T.V. Renewable energy waste recycling. Alternative Energy and Ecology (ISJAEE). 2024;(5):68-92. (In Russ.) https://doi.org/10.15518/isjaee.2024.05.068-092

Просмотров: 151


ISSN 1608-8298 (Print)