Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Reduction of iron-containing materials by carbon-hydrogen mixture in a liquid-phase reactor

https://doi.org/10.15518/isjaee.2024.04.099-111

Abstract

   This paper presents the results of the calculation of a liquid-phase reduction reactor with a capacity of 10 tons of reconstituted iron per hour. According to the equilibrium calculation of the compositions of a multicomponent heterogeneous thermodynamic system carried out using the proven IVTANTERMO software package, the degree of metallization of the product leaving the reactor is 99 %. The necessary costs have been established to ensure this degree of metallization of various iron-containing materials. The composition and volume of gases formed after reduction were determined.

About the Authors

K. V. Strogonov
NRU MPEI (National Research University MPEI)
Russian Federation

Konstantin Vladimirovich Strogonov, PhD, associate professor

Department of Innovative Technologies in High-tech Industries

111250; st. Krasnokazarmennaya, 17g, building 3; Moscow

Education: NRU MPEI, 2012

Research interests: decarbonization, hydrogen energy. Thermal power engineering, thermal engineering. Energy efficient use of energy resources.

Publications: 125



D. D. Lvov
NRU MPEI (National Research University MPEI)
Russian Federation

Dmitry Dmitrievich Lvov, post-graduate student, assistant and 1st category engineer, research engineer

Department of Innovative Technologies of Science-Intensive Industries (ITNO); Research Department «Development of scientific foundations and general technical solutions for creating a technology for determining the destruction of iron and continuous production of steel sheets»

111250; st. Krasnokazarmennaya, 17g, building 3; Moscow

Education: NRU MPEI, 2022

Research interests: decarbonization, hydrogen energy. Thermal power engineering, heating engineering. Energy efficient use of resources.

Publications: 20



V. A. Murashov
NRU MPEI (National Research University MPEI)
Russian Federation

Viacheslav Andreevich Murashov, engineer

Department of Innovative Technologies in High-tech Industries

111250; st. Krasnokazarmennaya, 17g, building 3; Moscow

Education: NRU MPEI, 2023

Research interests: decarbonization, hydrogen energy, energy efficiency

Publications: 13



A. K. Bastynets
NRU MPEI (National Research University MPEI)
Russian Federation

Andrey Konstantinovich Bastynets, engineer

Research Department «Development of scientific foundations and general technical solutions for the creation of technology for direct reduction of iron and continuous production of steel sheet»

111250; st. Krasnokazarmennaya, 17g, building 3; Moscow

Education: NRU MPEI, 2023

Research interests: garnissage, energy efficiency of metallurgy

Publications: 5



A. L Petelin
BMSTU (Bauman Moscow State Technical University)
Russian Federation

Alexander Lvovich Petelin, octor of Physical and Mathematical Sciences, Associate Professor, Professor

Department of Physical Chemistry

105005; st. 2nd Baumanskaya, 5, building 1; Moscow

Education: NUST MISIS, 2007

Research interests: thermodynamics and kinetics in heterogeneous metallurgical components Physicochemical analysis of the spread of industrial gas technologies in the troposphere

Publications: 145



O. V. Dyudina
KSPEU (Kazan State Power Engineering University)
Russian Federation

Olga Vladimirovna Dyudina, PhD, associate professor

Department of Economics and organization of production

420066; st. Krasnoselskaya, 51; Kazan

Education: KNRTU-KAI, 2002

Research interests: energy efficiency, quality management

Publications: 51



References

1. Crippa M. et al. CO<sub>2</sub> emissions of all world countries // JRC Science for Policy Report, European Commission, EUR. 2022. Vol. 31182.

2. Fedyukhin A. V. et al. Hydrogen application in the fuel cycle of compressed air energy storage // International Journal of Hydrogen Energy. – 2024. – Vol. 51. – P. 107-118.

3. Ledari M. B. et al. Greening steel industry by hydrogen: Lessons learned for the developing world //International Journal of Hydrogen Energy. – 2023.

4. Liu, W., Zuo, H., Wang, J., Xue, Q., Ren, B., & Yang, F. (2021). The production and application of hydrogen in steel industry. International Journal of Hydrogen Energy, 46(17), 10548-10569.

5. Wang, C., Walsh, S. D., Weng, Z., Haynes, M. W., Summerfield, D., & Feitz, A. (2023). Green steel: Synergies between the Australian iron ore industry and the production of green hydrogen. International Journal of Hydrogen Energy, 48(83), 32277-32293.

6. Thermostating cover as improving energy efficiency and technological steel mills / K. V. Strogonov, S. V. Tolkanov, K. A. Korkots // E3S Web of Conferens International Science Conference SPbWOSCE-2018 «Business Technologies for Sustainable Urban Development». 2019. – № 110. 01003

7. Voinov O. Yu., Lisienko V. G., Chesnokov Yu. N., Lapteva A. V. Comparison of energy consumption in modern steel production technologies // Energy and resource saving. Energy supply. Non-traditional and renewable energy sources. – Ekaterinburg, 2017. – 2017. – P. 127-131.

8. Gordon Y. et al. Comparative evaluation of energy efficiency and GHG emissions for alternate iron- and steelmaking process technologies // Creative heritage of VE Grum-Grzhimailo: history, current state, future. Part 1. – Ekaterinburg, 2014. Ural Federal University, 2014.

9. Kartavtsev S.V. Intensive energy saving and technical progress of ferrous metallurgy : Monograph. – Magnitogorsk: State Educational Institution of Higher Professional Education “MSTU”, 2008. – 311 p.

10. Tang, J., Chu, M. S., Li, F., Feng, C., Liu, Z. G., & Zhou, Y. S. (2020). Development and progress on hydrogen metallurgy. International Journal of Minerals, Metallurgy and Materials, 27, 713-723.

11. MIDREX [Electronic resource] // World direction statistics, 2020. URL: https://www.midrex.com/wp-content/uploads/Midrex-STATSbookprint-2020.Final_.pdf (access date: 01/18/2023).

12. COREX. Efficient and environmentally friendly smelting reduction, 2020. Available at: https://www.primetals.com/fileadmin/user_upload/content/01_portfolio/1_ironmaking/corex/COREX.pdf (accessed: 18 January 2023).

13. The FINEX process economical and environmentally safe ironmaking, 2020. Available at: https://www.primetals.com/fileadmin/user_upload/content/01_portfolio/1_ironmaking/finex/THE_FINEX_R__PROCESS.pdf (accessed: 18 January 2023).

14. Joulazadeh, M. H., & Etemad, A. (2022). Evaluation of the production of DRI in the world and Iran in 2021. International Journal of Iron & Steel Society of Iran, 19(1), 55-66.

15. Vokhmyakov, I. S., Bersenev, I. S., Borodin, A. V., Stepanova, A. A., Zagainov, S. A., & Gileva, L. Y. (2022). Mechanism of oxidation for hot briquetting iron (HBI). Steel in Translation, 52(3), 331-336.

16. Nanda, P. K., Sahai, A. K., & Das, S. K. (2022). Understanding the co-relationships of variables and improving product quality and productivity of DRI in rotary kiln. Materials Today: Proceedings, 56, 1538-1541.

17. Goodman, N. (2022, December). Pathways to Sustainable Steelmaking Using the HIsmelt Ironmaking Technology. In 2022-Sustainable Industrial Processing Summit (Vol. 11, pp. 231-240). Flogen Star Outreach.

18. Plaul, F. J., Böhm, C., & Schenk, J. L. (2009). Fluidized-bed technology for the production of iron products for steelmaking. Journal of the Southern African Institute of Mining and Metallurgy, 109(2), 121-128.

19. Gojic, M., & Kozuh, S. (2006). Development of direct reduction processes and smelting reduction processes for the steel production. Kem. Ind, 55(1), 1-10.

20. Floyd, J. M., & Fogarty, J. G. (1999). High quality pig iron from AusIron processing.

21. Borlee, J., Steyls, D., Colin, R., Munnix, R., & Economopoulos, M. (1999). COMET: a coal-based process for the production of high quality DRI from iron ore fines. Revue de Metallurgie, 96(3), 331-340.

22. Tsutsumi, H., Yoshida, S., & Tetsumoto, M. (2010). Features of FASTMET process. Kobelco technology review, 12, 85-92.

23. Ren, L., Zhou, S., Peng, T., & Ou, X. (2021). A review of CO<sub>2</sub> emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China. Renewable and Sustainable Energy Reviews, 143, 110846.

24. Ramakgala, C., & Danha, G. (2019). A review of ironmaking by direct reduction processes: quality requirements and sustainability. Procedia Manufacturing, 35, 242-245.

25. Sun, M., Pang, K., Barati, M., & Meng, X. (2024). Hydrogen-Based Reduction Technologies in Low-Carbon Sustainable Ironmaking and Steelmaking : A Review. Journal of Sustainable Metallurgy, 10(1), 10-25.

26. Liquid-phase reduction of iron with a carbon-hydrogen mixture in a continuous unit / Strogonov K.V., Petelin A.L., Terekhova A.Yu., Lvov D.D., Murashov V.A. // Collection of proceedings of the XVII International Congress of Steelmakers and Metal Producers “From ore to steel - ISCON-2013”, April 03-07, 2023, Magnitogorsk: Publishing House Alliance Metallurgy Corporation, 2023. – P. 266-271.

27. Calculation of individual elements of enclosing structures of a continuous steelmaking unit / K. V. Strogonov, A. A. Borisov, V. A. Murashov, D. D. Lvov // Paper presented at the Proceedings of the 2023 5<sup>th</sup> International Youth Conference on Radio Electronics, Electrical and Power Engineering, REEPE 2023, doi:10.1109/REEPE57272.2023.10086855.

28. Chevrier V., Lauren L., Michishita H. MIDREX® Process: Bridge to Ultra-low CO<sub>2</sub> Ironmaking // Kobelco Technol. Rev. – 2021. – Vol. 39. – P. 33-40.

29. Srishilan C., Shukla A. K. Static thermochemical model of COREX melter gasifier // Metallurgical and Materials Transactions B. Springer, 2018. – Vol. 49. – P. 388-398.

30. Ahmed M. et al. Effect of HYL process parameters on the quality of iron ore reduction // Journal of Petroleum and Mining Engineering. Suez University; Faculty of Petroleum and Mining Engineering, 2016. – Vol. 18, No. 1. – P. 54-60.

31. Yi S. -H. et al. FINEX® as an environmentally sustainable ironmaking process // Ironmaking & Steelmaking. SAGE Publications Sage UK: London, England, 2019. – Vol. 46, No. 7. – P. 625-631.

32. Mohsenzadeh F. M. et al. An environmental study on Persian direct reduction (PERED®) technology: Comparing capital cost and energy saving with MIDREX® technology // Ekoloji. – 2018. – Vol. 27, No. 106. – P. 959.

33. Murashov, V. A., Strogonov, K. V., Lvov, D. D., Bastynets, A. K. Continuous Degasser for Steel Melt Treatment // 2024 6<sup>th</sup> International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE). – IEEE, 2024. – pp. 1-6. DOI: 10.1109/REEPE60449.2024.10479925

34. Energy saving of high-temperature processes by intensive melt degassing / K V Strogonov, A. A. Zdarov // Journal of Physics: Conference Series / The Third Conference «Problems of Thermal Physics and Power Engineering», 2020. – 1683(5). 052029.

35. Strogonov, K. V., Lvov, D. D., Murashov, Borisov A. A. Steel degassing in continuous steel melting units // Bulletin of the Tomsk Polytechnic University Geo Assets Engineering. – 2024. – Vol. 335. – No. 1. – pp. 140-147. doi: 10.18799/24131830/2024/1/4154

36. Zainullin L. A. et al. High-temperature carbon-thermal reduction of siderite ores in an electric arc // Metallurg. Limited Liability Company «Metallurgizdat», 2016. – No. 11. – P. 31-34.

37. Zainullin L. A. et al. Analysis of the economic and energy efficiency of using electric arc reduction of iron-containing materials // Metallurg. Limited Liability Company «Metallurgizdat», 2018. – No. 7. – P. 33-37.

38. Epifanov A.V., Vasilyeva E. A. The best achieved technologies and technological rationing. – 2020.

39. Sazhin A. Development of energy-saving innovative processes for the complex processing of industrial waste based on new metallurgical technologies // IV conference «TRIZ. Practice of using methodological tools». – 2012.

40. Liquid-phase reduction reactor with a carbon-hydrogen mixture / K. V. Strogonov, D. D. Lvov, V. A. Murashov, A. K. Bastynets, A. Yu. Terekhova, A. L. Petelin // Paper presented at the Proceedings of the 2024 6<sup>th</sup> International Youth Conference on Radio Electronics, Electrical and Power Engineering, REEPE 2024, pp. 1-6 doi: 10.1109/REEPE60449.2024.10479685.

41. Garnissage as an effective fence in high-temperature reactors / K. V. Strogonov, A. K. Bastynets, A. A. Ushakova, D. D. Lvov, V. A. Murashov // Paper presented at the Proceedings of the 2024 6<sup>th</sup> International Youth Conference on Radio Electronics, Electrical and Power Engineering ,REEPE 2024, pp. 1-5. doi: 10.1109/REEPE60449.2024.10479902.

42. Romelt Process / Ed. V. A. Romenz. – M.: “MISIS”, Publishing House “Ore and Metals”, 2005. – 400 p.


Review

For citations:


Strogonov K.V., Lvov D.D., Murashov V.A., Bastynets A.K., Petelin A.L., Dyudina O.V. Reduction of iron-containing materials by carbon-hydrogen mixture in a liquid-phase reactor. Alternative Energy and Ecology (ISJAEE). 2024;(4):99-111. (In Russ.) https://doi.org/10.15518/isjaee.2024.04.099-111

Views: 201


ISSN 1608-8298 (Print)