Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Increasing the efficiency of a conversion gas turbine engine by adding hydrogen to fuel gas

https://doi.org/10.15518/isjaee.2024.04.112-127

Abstract

   Hydrogen, as a zero-carbon fuel, is becoming an important component for decarbonizing the economy. It can be used not only as a storage medium, but also as a fuel for power generation equipment. Hydrogen is very different in its energy properties (high calorific value, high combustion rate), which are very different from traditional gas turbine fuels, so when burning hydrogen, new unexplored problems may arise during the operation of main and auxiliary equipment. To introduce hydrogen technologies into the traditional energy system, new approaches to equipment operation are required. Gas turbines, unlike other power equipment, can be configured to burn any gaseous fuel that meets the combustion chamber requirements. Combustion of 100 % H2 in the combustion chamber of an operating gas turbine is impossible without deep modernization; this can cause damage to the main and auxiliary equipment. Gas turbines powered by hydrogen will be an important component in the decarbonization of all industries. The article discusses the variable operating modes of a gas turbine unit with a capacity of 18 MW, depending on the percentage of H2 in natural gas. The traditional fuel for gas turbines is natural gas, and the presented study considers adding up to 20 % hydrogen to the natural gas feed. The addition of hydrogen fuel affects the operating mode of the turbine. The operation of a gas turbine unit at various outside temperatures, operation at full and partial load in the conditions of the wholesale electricity market is considered.

About the Authors

G. E. Maryin
Kazan State Energy University
Russian Federation

George Marin, Candidate of Technical Sciences, Senior Lecturer

420066; st. Krasnoselskaya, 51; Kazan

Education: Kazan State Power Engineering University (2011)

Current Field of Interest and Activities: hydrogen energy; mathematical modeling of turbomachines; energy systems using fossil fuels

Publications: 95

Н-index: 15

Scopus Author ID: 57213835443; Research ID: AGS-9168-2022



A. V. Titov
Kazan State Energy University
Russian Federation

Alexandr Titov, Candidate of Technical Sciences, Assistant professor

420066; st. Krasnoselskaya, 51; Kazan

Education: Kazan National Research Technical University named after. A. N. Tupolev (1984)

Current Field of Interest and Activities: hydrogen energy; mathematical modeling of turbomachines; energy systems using fossil fuels

Publications: 112

Н-index: 10

Scopus Author ID: 56343587900; Research ID: GLR-9981-2022



A. R. Akhmetshin
Kazan State Energy University
Russian Federation

Azat Akhmetshin, Candidate of Technical Sciences, Assistant professor

420066; st. Krasnoselskaya, 51; Kazan

Education: Kazan State Power Engineering University (2009)

Current Field of Interest and Activities: hydrogen energy; mathematical modeling of turbomachines

Publications: 180

Н-index: 27

Scopus Author ID: 57211796456; Research ID: AGM-7165-2022



A. V. Ishalin
Kazan State Energy University
Russian Federation

Alexander Ishalin, Postgraduate student

Department of Power Engineering

420066; st. Krasnoselskaya, 51; Kazan

Education: Kazan State Power Engineering University (2023)

Current Field of Interest and Activities: hydrogen energy; mathematical modeling of turbomachines; energy systems using fossil fuels

Publications: 26

Н-index: 1

Scopus Author ID: 57456977800



References

1. Kivimaa P. How will renewables expansion and hydrocarbon decline impact security? Analysis from a socio-technical transitions perspective / P. Kivimaa, M. H. Sivonen // Environmental Innovation and Societal Transitions. – 2023. – Vol. 48. – Article Number 100744. – DOI: 10.1016/j.eist.2023.100744.

2. Abd А. A. Effects of non-hydrocarbons impurities on the typical natural gas mixture flows through a pipeline / А. A. Abd, S. Z. Naji, A. S. Hashim // Journal of Natural Gas Science and Engineering. – 2020. – Vol. 76. – Article Number 103218. – DOI: 10.1016/j.jngse.2020.103218.

3. Gałko G. Evaluation of alternative refuse-derived fuel use as a valuable resource in various valorised applications / G. Gałko, I. Mazur, M. Rejdak, B. Jagustyn, J. Hrabak, M. Ouadi, H. Jahangiri, M. Sajdak // Energy. – 2023. – Vol. 263. – Part D. – Article Number 125920. – DOI: 10.1016/j.energy.2022.125920.

4. Achitaev, A., Life extension of AC-DC converters for hydrogen electrolysers operating as part of offshore wind turbines/ Achitaev, A., Suvorov, A., Ilyushin, P., Kan, K., Suslov, K./ International Journal of Hydrogen Energy, 2024, 51, pp. 137-159

5. Karaeva, J. Pyrolysis of Amaranth Inflorescence Wastes: Bioenergy Potential, Biochar and Hydrocarbon Rich Bio-Oil Production / Timofeeva, S.; Islamova, S.; Bulygina, K.; Aliev, F.; Panchenko, V.; Bolshev, V / Agriculture 2023, 13, 260.

6. 6 Ermolaev, D. V. A comprehensive study of thermotechnical and thermogravimetric properties of peat for power generation / Timofeeva, S. S., Islamova, S. I. et al / Biomass Conv. Bioref. 9, 767-774 (2019). doi: 10.1007/s13399-019-00472-8

7. Gao D. A coordinated energy security model taking strategic petroleum reserve and alternative fuels into consideration / D. Gao, Z. Li, P. Liu, J. Zhao, Y. Zhang, C. Li // Energy. – 2018. – Vol. 145. – P. 171-181. – DOI: 10.1016/j.energy.2017.11.097.

8. Marin G. Study of the Properties of Fuel Gas in Gas Turbine Plants Depending on Its Composition / G. Marin, B. Osipov, D. Mendeleev // Lecture Notes in Mechanical Engineering. – 2022. – P. 403-412. – DOI: 10.1007/978-981-16-9376-2_38

9. Zakaria Z. Direct conversion technologies of methane to methanol: An overview / Z. Zakaria, S. K. Kamarudin // Renewable and Sustainable Energy Reviews. – 2016. – Vol. 65. – P. 250-261. – DOI: 10.1016/j.rser.2016.05.082.

10. Marin G. E. Simulation of the operation of a gas turbine installation of a thermal power plant with a hydrogen fuel production system / G. E. Marin, B. M. Osipov, A. V. Titov, A. R. Akhmetshin // International Journal of Hydrogen Energy. – 2023. – Vol. 48 – Iss. 12. – P. 4543-4550. – DOI: 10.1016/j.ijhydene.2022.10.075.

11. Tasnadi-Asztalos Hydrogen-based power generation from bioethanol steam reforming / Tasnadi-Asztalos, Zs., Cormos, C. C., Agachi / P. S. AIP Conference Proceedings, 2015, 1700, 050001.

12. Abejón, R., Integration of quality-dependent prices in the optimization strategy for chemicals ultrapurification by reverse osmosis membrane cascades / Abejón, R., Garea, A., Irabien, A. / Desalination and Water Treatment, 56(13), 2015, pp. 3486-3493.

13. Lamas, M. I., Numerical Analysis of Emissions from Marine Engines Using Alternative Fuels / Lamas, M. I., Rodríguez, C. G., Telmo, J., Rodríguez, J. D. / Polish Maritime Research, 2015, 22(4), pp. 48-52.

14. Barhoumi, E. M. Optimal design of standalone hybrid solar-wind energy systems for hydrogen-refueling station Case study /Barhoumi, E. M./ Journal of Energy Storage, 2023, 74, 109546.

15. Zamanzade M. An Overview of the Hydrogen Embrittlement of Iron Aluminides / M. Zamanzade, A. Barnoush // Procedia Materials Science. – 2014. – Vol. 3. – P. 2016-2023. – DOI: 10.1016/j.mspro.2014.06.325.

16. Honma Y. Study of Embrittlement of the 2.25 Cr-1 Mo-V Steel Weld Metal by Hydrogen Charge and High Pressure Hydrogen Gas Environment / Y. Honma, R. Kayano // Procedia Engineering. – 2015. – Vol. 130. – P. 571-582. – DOI: 10.1016/j.proeng.2015.12.269.

17. Gicquel L. Y. M. Large Eddy Simulations of gaseous flames in gas turbine combustion chambers / L. Y. M. Gicquel, G. Staffelbach, T. Poinsot // Progress in Energy and Combustion Science. – 2012. – Vol. 38 – Iss. 6. – P. 782-817. – DOI: 10.1016/j.pecs.2012.04.004.

18. Al-attab K. A. Design and performance of a pressurized cyclone combustor (PCC) for high and low heating value gas combustion / K. A. Al-attab, Z. A. Zainal // Applied Energy. – 2011. – Vol. 88 – Iss. 4. – P. 1084-1095. – DOI: 10.1016/j.apenergy.2010.10.041.

19. Bulysova, L. A., Influence of Hydrogen in Fuel Gas on the Processes in Gas Turbine Combustion Chambers / Bulysova, L. A., Vasiliev, V. D., Pugach, K. S. / Power Technology and Engineering, 57(4), pp. 599-604

20. Liang, B., Effects of chamber geometry, hydrogen ratio and EGR ratio on the combustion process and knocking characters of a HCNG engine at the stoichiometric condition/ Liang, B., Cheng, L., Zhang, M., ...Ma, F., Huang, Z. / Applications in Energy and Combustion Science, 15, 100189, 2023.

21. Álvarez Tejedor. Gas turbine materials selection, life management and performance improvement / T. Álvarez Tejedor // In Woodhead Publishing Series in Energy Power Plant Life Management and Performance Improvement. Woodhead Publishing. – 2011. – Vol. 9. – Р. 330-419. – DOI: 10.1533/9780857093806.3.330.

22. Adamou A. Design, simulation, and validation of additively manufactured high-temperature combustion chambers for micro gas turbines / A. Adamou, J. Turner, A. Costall, A. Jones, C. Copeland // Energy Conversion and Management. – 2021. – Vol. 248. – Article Number 114805. – DOI: 10.1016/j.enconman.2021.114805.

23. Marin G. Improving the Performance of Power Plants with Gas Turbine Units / G. Marin, B. Osipov, A. Titov, A. Akhmetshin, A. Shubina, M. Novoselova // Proceedings – 2022 4<sup>th</sup> International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency. SUMMA 2022. – 2022. – P. 832-836. – DOI: 10.1109/SUMMA57301.2022.9974004.

24. Marin G. Analysis of the Operation of a Gas Turbine Plant When Burning Hydrogen Fuel / G. Marin, B. Osipov, A. Akhmetshin // Proceedings – 2022 International Russian Automation Conference, RusAutoCon 2022. – P. 961-965. – DOI: 10.1109/RusAutoCon54946.2022.9896214.

25. Samitha Weerakoon A. H. Trends and Advances in Micro Gas Turbine Technology for Sustainable Energy Solutions: A Detailed Review / A. H. Samitha Weerakoon, M. Assadi // Energy Conversion and Management: X. – 2023. – Article Number 100483. – DOI: 10.1016/j.ecmx.2023.100483.

26. Enagi I. I. Combustion chamber design and performance for micro gas turbine application / I. I. Enagi, K. A. Al-attab, Z. A. Zainal // Fuel Processing Technology. – 2017. – Vol. 166. – P. 258-268. – DOI: 10.1016/j.fuproc.2017.05.037.

27. Osipov B. M. Investigation of power gas turbine drives on the basis of mathematical models / B. M. Osipov, A. V. Titov, A. R. Khammatov // Russian Aeronautics. – 2010. – Vol. 53. – P. 69–72. – DOI: 10.3103/S1068799810010113.

28. Ishaq H., Performance investigation of adding clean hydrogen to natural gas for better sustainability / H. Ishaq, I. Dincer // Journal of Natural Gas Science and Engineering. – 2020. – Vol. 78. – Article Number 103236. – DOI: 10.1016/j.jngse.2020.103236.

29. 29 Şöhret, Y., Exergy analysis of a turbofan engine for an unmanned aerial vehicle during a surveillance mission / Şöhret, Y., Dinç, A., Karakoç, T. H. / Energy, 93, 2015, pp. 716-729.

30. 30 Galashov, N. N., Thermal Efficiency of Three-Cycle Utilization-Type Steam-Gas Units / Galashov, N. N., Tsibulskii, S. A. / Power Technology and Engineering, 48(6), 2015, pp. 459-463.

31. Sorgulu F. Experimental investigation for combustion performance of hydrogen and natural gas fuel blends / F. Sorgulu, M. Ozturk, N. Javani, I. Dincer // International Journal of Hydrogen Energy. – 2023. – Vol. 48. – Iss. 88. – P. 34476-34485. – DOI: 10.1016/j.ijhydene.2023.05.239.

32. Guo Q. On the explosion characteristics of natural gas with hydrogen and inert gas additions / Q. Guo, J. Liu, W. Liang, H. Wang // Process Safety and Environmental Protection. – 2023. – Vol. 179. – P. 700-713. – DOI: 10.1016/j.psep.2023.09.056.

33. Slim B. K. The combustion behaviour of forced-draught industrial burners when fired within the EASEE-gas range of Wobbe Index / B. K. Slim, H. D. Darmeveil, S. Gersen, H. B. Levinsky // Journal of Natural Gas Science and Engineering. – 2011. – Vol. 3. – Iss. 5. – P. 642-645. – DOI: 10.1016/j.jngse.2011.07.004.

34. Worasaen A. Suitable Study of CBG Fuel by Considering in Wobbe Index From Compressed Bio-Methane Gas Plant, Khon Kaen University, Thailand / A. Worasaen, N. Pannucharoenwong, C. Benjapiyaporn, J. Jongpluempiti, P. Vengsungnle // Energy Procedia. – 2017. – Vol. 138. – P. 278-281. – DOI: 10.1016/j.egypro.2017.10.061.

35. Roy P. S. Predicting Wobbe Index and methane number of a renewable natural gas by the measurement of simple physical properties / P. S. Roy, C. Ryu, C. S. Park // Fuel. – 2018. – Vol. 224. – P. 121-127. – DOI: 10.1016/j.fuel.2018.03.074.

36. Zachariah-Wolff J. L. From natural gas to hydrogen via the Wobbe index: The role of standardized gateways in sustainable infrastructure transitions / J. L. Zachariah-Wolff, T. M. Egyedi, K. Hemmes // International Journal of Hydrogen Energy. – 2007. – Vol. 32. – Iss. 9. – P. 1235-1245. – DOI: 10.1016/j.ijhydene.2006.07.024.

37. Mendeleev D. I. Improving the efficiency of combined-cycle plant by cooling incoming air using absorption refrigerating machine / D. I. Mendeleev, G. E. Maryin, A. R. Akhmetshin // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 643. – Article Number 012099. – DOI: 10.1088/1757-899X/643/1/012099.


Review

For citations:


Maryin G.E., Titov A.V., Akhmetshin A.R., Ishalin A.V. Increasing the efficiency of a conversion gas turbine engine by adding hydrogen to fuel gas. Alternative Energy and Ecology (ISJAEE). 2024;(4):112-127. (In Russ.) https://doi.org/10.15518/isjaee.2024.04.112-127

Views: 102


ISSN 1608-8298 (Print)