Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Solar photovoltaic system with max power tracking

https://doi.org/10.15518/isjaee.2024.06.012-030

Abstract

The paper investigates the state-of-the-art architecture of photovoltaic systems (PVS) by evaluating the performance of the developed maximum power point tracking (MPPT) algorithm of fuzzy particle swarm optimization (FPSO) for temperate continental latitudes. The material of the paper gives an evaluation of traditional MPPT algorithms in relation to the state-of-the-art FPSO algorithm. The paper summaries the experience of observations of climatic factors and solar resources on the example of the Russian Federation. Thus, in 2023, the average winter temperature exceeded the norm by 4,7 ºC, and the average summer temperature exceeded the norm by 4,9 ºC compared to 2022. The paper analyses the level of insolation, which increased by 0,03 kWh/m2 by regions of Russia for the period 2022-2023. The experimental part of the work was carried out at the solar power plant (SPP) «Kalmykskaya» with coordinates 53,422832 north latitude and 55,266895 east longitude. The watt-volt field characteristic of photovoltaic modules (PVM) connected to the inverter was obtained experimentally. When compared, the correlation coefficient between the experimental power (P) and voltage (U) of the panels was found to be higher than that of the ideal panels, 0,933 versus 0,914. The correlation coefficient between the ideal P(U) function and the experimental one is (-0,475). The data for calculating the coefficient of performance (COP) of the implemented MPPT algorithm was also obtained experimentally, which was about 98,7%. The reliability of the data used in the calculations was confirmed by two independent means of measurement, the difference of the obtained results was less than 1%. In the last part of the experiment of this study, the dependence of insolation in a given geographical point on the generated PV field power was evaluated. The correlation coefficient was 0,47, while the inverter output voltage was maintained in the nominal range of (600 ± 20%) V. Thus, the authors of the study experimentally proved the efficiency of using MPPT on FPSO in temperate continental climate with duration of sunshine T = 1850 hours per year. The effectiveness of the FPSO algorithm under the conditions of inverter distance from the common point of the DC switching cabinet (DCSC) has been confirmed. The effectiveness of the MPPT algorithm based on FPSO under conditions of partial shading, increased cloud cover and increased air temperature is concluded. Using the description of the current architecture of On-Grid SPP, the authors draw attention to the impossibility of operation of such systems without the presence of voltage in the reference network. In addition, the impossibility of the system operation at the value of PVM power over 1500 kW and at the voltage of panels less than 900 V is noted. To modernize the existing PVS architecture, for the first time, the use of a DCSC and an inverter with implemented MPPT on the FPSO in combination with a hydrogen (H2) production unit and nickel-hydrogen (Ni-H2) batteries is proposed. The researchers propose that when the PVM field voltage is below 900 V and when the PVM field power exceeds 1500 kW, energy can be diverted to H2 generation or to charge Ni-H2 batteries via a DCSC controller. Such an architecture will improve the continuity and efficiency of the PVS, reduce the carbon footprint, and allow the PVS to be used as an industrial uninterruptible power supply (UPS). The authors see the lack of standardization of implemented projects based on the ESG principle as the main problem of alternative energy development.

About the Authors

G. N. Gusev
Federal State Autonomous Educational Institution of Higher Education «National Research Technological University «MISIS», Department of Energy and Energy Efficiency of the Mining Industry; Parus еlectro LLC
Russian Federation

Gusev Gleb Nikolaevich - third-year postgraduate student of NITU MISIS, EEGP department, leading engineerdeveloper of Parus electro LLC, technical solutions development department, renewable energy sources department.

119049, Moscow, Leninsky Prospekt, 4, building 1, Tel.: +7(495)955-00-32, +7(916)-935-95-56; 115404, Moscow, st. 6th Radialnaya, 9, Tel.: +7(495)518-92-92



O. V. Zhdaneev
Federal State Budgetary Institution of Science of the Order of the Red Banner of Labor Institute of Petrochemical Synthesis named after. A. V. Topchiev Russian Academy of Sciences (INHS RAS)
Russian Federation

Zhdaneev Oleg Valerevich - Leading Researcher INHS RAS. Professor of the Higher Oil School, Yugra SU. Advisor to the General Director/Senior Advisor to the General Director of the Federal State Budgetary Institution «Russian Energy Agency» of the ME RF/jSC «Center for Operational Services». Doctor of Technical Sciences.

119991, GSP-1, Moscow, Leninsky Prospekt, 29, tel.: +7(495)955-42-01; Khanty-Mansiysk, Chekhov str., 16



M. E. Gainullin
Parus еlectro LLC
Russian Federation

Gainullin Mark Eduardovich - Leading engineer-circuit design of the department renewable energy.

115404, Moscow, st. 6th Radialnaya, 9, Tel.: +7(495)518-92-92



A. Yu. Argastsev
JSC Rusatom Automated Control Systems
Russian Federation

Argastsev Aleksandr Yurevich – head of the department.

115230, Moscow, sh. Kashirskoe, 3, building 2, building 16, tel.: +7(495)933-43-40



D. N. Lapkin
Parus еlectro LLC
Russian Federation

Lapkin Dmitrii Nikolaevich – Head of the technical solutions development department, head of the department renewable energy.

115404, Moscow, st. 6th Radialnaya, 9, Tel.: +7(495)518-92-92



References

1. Zhdaneev O. V. Technological sovereignty of the Russian Federation fuel and energy complex. Journal of Mining Institute. – 2022. – Vol. 258, p. 1061-1078. DOI: 10.31897/PMI.2022.107

2. Ehsanul Kabir, Pawan Kumar, Sandeep Kumar, Adedeji A. Adelodun, Ki-Hyun Kim, Solar energy: Potential and future prospects, Renewable and Sustainable Energy Reviews, Volume 82, Part 1, 2018, Pages 894-900, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2017.09.094.

3. Srikanth, M. & Yadlapati, Kishore. (2024). MPPT Techniques Exploration under Uniform and Non-Uniform Solar Irradiance Condition – A Sur vey. E3S Web of Conferences. 472. 10.1051/e3sconf/202447201024

4. Experimental Implementation of Cascaded H-Bridge Multilevel Inverter with an Improved Reliability for Solar PV Applications. C. Dhanamjayulu T. Girijaprasanna. https://www.hindawi.com/journals/itees/2023/8794874/

5. Classification and comparison of maximum power point tracking techniques for photovoltaic system. Ali Reza Reisi, Mohammad Hassan Moradi, Shahriar Jamasb. https://www.sciencedirect.com/science/article/abs/pii/S1364032112006661

6. https://www.solarhome.ru/basics/solar/pv/mppt.htm?ysclid=lonfah6wlz212657986

7. Photovoltaic System Modeling with Fuzzy Logic Based Maximum Power Point Tracking Algorithm. Hasan Mahamudul, Mekhilef Saad, Metselaar Ibrahim Henk. https://www.sciencedirect.com/science/article/pii/S2090447922003033

8. Manna, Saibal & Singh, Deepak & Akella, Ashok & Kotb, Hossam & Aboras, Kareem & Zawbaa, Hossam & Kamel, Salah. (2023). Design and implementation of a new adaptive MPPT controller for solar PV systems. Energy Reports. 9. 1818-1829. 10.1016/j.egyr.2022.12.152.

9. Arshad, Naseem & Daud, Mohd & Md, Shahrin & Ayop, Razman. (2024). A Hybrid Maximum Power Point Tracking (MPPT) for Thermoelectric Generator (TEG) System. 10.1007/978-981-99-6749-0_36.

10. Mukti, Ersalina & Risdiyanto, Agus & Kristi, Ardath & Darussalam, Rudi. (2023). Particle Swarm Optimization (PSO) based Photovoltaic MPPT Algorithm under the Partial Shading Condition. Jurnal Elektronika dan Telekomunikasi. 23. 99. 10.55981/jet.552.

11. Padmanaban, Meganathan & Chinnathambi, Sasi & P., Pugazhendiran & Pachaivannan, Nammalvar. (2021). An Extensive Study on Online, Offline and Hybrid MPPT Algorithms for Photovoltaic Systems. Majlesi Journal of Electrical Engineering. 15. 1-16. 10.52547/mjee.15.3.1.

12. Grid-Connected Solar PV System with Maximum Power Point Tracking and Battery Energy Storage Integrated with Sophisticated Three-Level NPC Inverter. D. Ravi Kishore, Vijay Muni, Srinivas Raja, Mukesh Pushkarna, Srikanth Goud, Kareem M. AboRas, Sadam Alphonse. https://www.hindawi.com/journals/itees/2023/3209485/

13. Artificial intelligence techniques for photovoltaic applications. Adel Mellit, Soteris A. Kalogirou. https://www.sciencedirect.com/science/article/abs/pii/S0360128508000026#preview-section-snippets

14. Hasan Bektas Percin, Abuzer Caliskan. Whale optimization algorithm based MPPT control of a fuel cell system, International Journal of Hydrogen Energy, Volume 48, Issue 60, 2023, Pages 23230-23241, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2023.03.180.

15. A review of soft computing methods for harmonics elimination PWM for inverters in renewable energy conversion systems. Abdul Moeed Amjad, Zainal Salam. https://www.sciencedirect.com/science/article/abs/pii/S1364032114001026

16. studyinrussia.ru

17. https://power.larc.nasa.gov/data-access-viewer/

18. https://solarsystems.msk.ru/areas/#projects

19. Argastsev, A. Y., Zhdaneev, O. V., Stavtsev, A. V. et al. Inverters for Technological Development of Russia’s Energy Sector and Industry. Power Technol Eng 56, 309–318 (2022). https://doi.org/10.1007/s10749-02301511-1

20. Местников Н. П., Васильев П. Ф., Давыдов Г. И., Хоютанов А. М., Альзаккар А. М.-Н. ИССЛЕДОВАНИЕ ФУНКЦИОНИРОВАНИЯ ФОТОЭЛЕКТРИЧЕСКОЙ УСТАНОВКИ В УСЛОВИЯХ ОБЛАЧНОЙ ПОГОДЫ НА ТЕРРИТОРИИ СЕВЕРА // Вестник ИрГТУ. – 2022. – № 1 (162). https://doi.org/10.21285/1814-3520-2022-1-81-91

21. Xiao, Lingfei & Shen, Bin & Wei, Ye & Meng, Xiangshuo. (2023). MPPT Control of Solar Powered UAV Photovoltaic Power Supply Based on Intelligent Sliding Mode. 10.4271/2023-01-7095.

22. Rajesh Kannan, Venkatesan Sundharajan. A novel MPPT controller based PEMFC system for electric vehicle applications with interleaved SEPIC converter. International Journal of Hydrogen Energy, Volume 48, Issue 38, 2023, Pages 14391-14405, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2022.12.284

23. https://realsolar.ru/article/solnechnye-batarei/kolichestvo-solnechnoy-energii-v-regionah-rossii/

24. А. Бутузов. «Российская солнечная электроэнергетика». Окружающая среда и энерговедение. – № 2, 2020, С. 10-25. doi:10.5281/zenodo.3930294

25. Bazhenov, Stepan & Dobrovolsky, Yu. & Maksimov, A. & Zhdaneev, Oleg. (2022). Key challenges for the development of the hydrogen industry in the Russian Federation. Sustainable Energy Technologies and Assessments. 54. 102867.10.1016/j.seta.2022.102867.

26. Fatih Yilmaz, Murat Ozturk, Resat Selbas. Development and assessment of a solar-driven multigeneration plant with compressed hydrogen storage for multiple useful products. International Journal of Hydrogen Energy, Volume 48, Issue 99, 2023, Pages 39043-39063,ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2022.12.080.

27. Junjie Zhao, Min Liu, Xuesong Zhang, Zhengkai Tu, Off-grid solar photovoltaic-alkaline electrolysis-metal hydrogen storage-fuel cell system: An investigation for application in eco-neighborhood in Ningbo, China, International Journal of Hydrogen Energy, Volume 48, Issue 50,2023, Pages 19172-19187, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2023.02.007.

28. Sabrina Fernandes Macedo, Drielli Peyerl. Prospects and economic feasibility analysis of wind and solar photovoltaic hybrid systems for hydrogen production and storage: A case study of the Brazilian electric power sector, International Journal of Hydrogen Energy, Volume 47, Issue 19, 2022, Pages 10460-10473, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2022.01.133.

29. Xuan Wang, Qi Li, Weirong Chen, Weiying Wang, Yuchen Pu, Jin Yu, Parallel interaction influence of single-stage photovoltaic grid-connected/hydrogen production multi-inverter system based on modal analysis. International Journal of Hydrogen Energy, Volume 44, Issue 11, 2019, Pages 5143-5152, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2018.10.046

30. Galitskaya, Elena & Zhdaneev, Oleg. (2022). Development of electrolysis technologies for hydrogen production: A case study of green steel manufacturing in the Russian Federation. Environmental Technology & Innovation. 27. 102517. 10.1016/j.eti.2022.102517.

31. Mengdi Ji., Jianlong Wang. Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators, International Journal of Hydrogen Energy, Volume 46, Issue 78, 2021, Pages 38612-38635, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2021.09.142.

32. Roxanne Pinsky, Piyush Sabharwall, Jeremy Hartvigsen, James O’Brien, Comparative review of hydrogen production technologies for nuclear hybrid energy systems, Progress in Nuclear Energy, Volume 123, 2020, 103317, ISSN 0149-1970, https://doi.org/10.1016/j.pnucene.2020.103317.

33. Galitskaya, E. & Khakimov, R. & Moskvin, A. & Zhdaneev, Oleg. (2023). Towards a new perspective on the efficiency of water electrolysis with anionconducting matrix. International Journal of Hydrogen Energy. 49. 10.1016/j.ijhydene.2023.10.339.

34. Егоров А. Н., Юрин В. Е. Первичное регулирование частоты тока в энергосистеме атомными электростанциями на основе водороднотеплового аккумулирования. Альтернативная энергетика и экология (ISJAEE). 2021; (1-3):21-33. https://doi.org/10.15518/isjaee.2021.01.002

35. Herczeg, B.; Pintér, É. The Nexus between Wholesale Electricity Prices and the Share of Electricity Production from Renewables: An Analysis with and without the Impact of Time of Distress. Energies 2024, 17, 857. https://doi.org/10.3390/en17040857

36. Chu, Steven & Majumdar, Arun. (2012). Opportunities and challenges for a sustainable energy future. Nature. 488. 294-303. 10.1038/nature11475.

37. Yang, Zhenguo & Zhang, Jianlu & Kintner-Meyer, Michael & Lu, Xiaochuan & Choi, Daiwon & Lemmon, John & Liu, William. (2011). Electrochemical Energy Storage for Green Grid. Chemical reviews. 111. 3577-613. 10.1021/cr100290v.

38. Fagerström, Jonathan & Das, Soumya & Klyve, Øyvind & Olkkonen, Ville & Marstein, Erik. (2024). Profitability of battery storage in hybrid hydropower-solar photovoltaic plants. Journal of Energy Storage. 77. 109827. 10.1016/j.est.2023.109827.

39. Tarasenko, Alexey & Kiseleva, S. & Popel’, O. (2022). Hydrogen energy pilot introduction – Technology competition. International Journal of Hydrogen Energy. 47. 10.1016/j.ijhydene.2022.01.242.

40. Li Ruihan, Hu Feng, Xia Ting, Li Yongzhi, Zhao Xin, Zhu Jiaqi,Progress in the application of first principles to hydrogen storage materials,Internation al Journal of Hydrogen Energy,Volume 56, 2024,Pages 1079-1091, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2023.12.259.

41. Faeze Moradi Nafchi, Ehsan Baniasadi, Ebrahim Afshari, Nader Javani. Performance assessment of a direct steam solar power plant with hydrogen energy storage: An exergoeconomic study, International Journal of Hydrogen Energy, Volume 47, Issue 62, 2022, Pages 26023-26037, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2022.01.250.

42. Emad Abdelsalam, Fares Almomani, Feras Kafiah, Hamza Alnawafah, Adel Juaidi, Ramez Abdallah. Integrating solar chimney power plant with electrolysis station for green hydrogen production: A promising technique, International Journal of Hydrogen Energy, Volume 52, Part B, 2024, Pages 1550-1563, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2023.08.305.

43. Chen, Siyuan & Chen, Zijie & Liu, Zhicun. (2023). Preparation and application of lithium batteries, nickel-hydrogen batteries and nickel-cadmium batter ies. Applied and Computational Engineering. 23. 59-67. 10.54254/2755-2721/23/20230612.

44. Uesato, Hiroki & Miyaoka, Hiroki & Ichikawa, Takayuki & Kojima, Yoshitsugu. (2019). Hybrid nickel-metal hydride/hydrogen battery. International Journal of Hydrogen Energy. 44. 10.1016/j.ijhydene.2018.12.114.

45. KOVTUN, Vladimir. (2022). Procedures for cognitive and synergetic observation and proactive control of power capacity of nickel-hydrogen storage batteries onboard a geostationary spacecraft. Space engineering and technology. 109-124. 10.33950/spacetech-2308-7625-2022-1-109-124.

46. Chen, Wei & Jin, Yang & Zhao, Jie & Liu, Nian & Cui, Yi. (2018). Nickel-hydrogen batteries for large-scale energy storage. Proceedings of the Nation al Academy of Sciences. 115. 201809344. 10.1073/pnas.1809344115.

47. Lee, Jisu & Song, Hyun-Kon. (2023). Low-Voltage Hydrogen Production via Hydrogen Peroxide Oxidation Facilitated by Oxo Ligand Axially Coordinated to Cobalt in Phthalocyanine Moiety. ECS Meeting Abstracts. MA2023-02. 62-62. http://dx.doi.org/10.1149/MA2023-02162mtgabs

48. Tao Hai, Ammar K. Alazzawi, Jincheng Zhou, Hamid Farajian, Performance improvement of PEM fuel cell power system using fuzzy logic controller-based MPPT technique to extract the maximum power under various conditions, International Journal of Hydrogen Energy, Volume 48, Issue 11, 2023, Pages 4430-4445, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2022.10.103.

49. Mostafa El-Shafie, Shinji Kambara, Yukio Hayakawa, Tomonori Miura. «Preliminary results of hydrogen production from water vapor decomposition using DBD plasma in a PMCR reactor». International Journal of Hydrogen Energy, Volume 44, Issue 36, 2019, Pages 20239-20248, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2019.05.199.

50. Zhdaneev, Oleg. (2022). Russian fuel and energy complex technology policy at the moment of energy transition. Eurasian Mining. 13-19. 10.17580/ em.2022.01.03.

51. Mostafa El-Shafie, Shinji Kambara,Comprehensive analysis of hydrogen production from various water types using plasma: Water vapour decomposition in the presence of ammonia and novel reaction kinetics analysis. International Journal of Hydrogen Energy, Volume 52, Part D, 2024, Pages 14-30, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2022.11.209.

52. Şehnaz Genç, Harun Koku, A preliminary techno-economic analysis of photofermentative hydrogen production. International Journal of Hydrogen Energy, Volume 52, Part D, 2024, Pages 212-222, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2023.03.475.

53. Fatueva, E. & Shpilkina, T. & Shishova, I. & Filimonova, N. (2023). Development of renewable energy and hydrogen energy in the Russian economy: problems and prospects. Scientific notes of the Russian academy of entrepreneurship. 22. 90-100. DOI:10.24182/2073-6258-2023-22-3-90-100.


Review

For citations:


Gusev G.N., Zhdaneev O.V., Gainullin M.E., Argastsev A.Yu., Lapkin D.N. Solar photovoltaic system with max power tracking. Alternative Energy and Ecology (ISJAEE). 2024;(6):12-30. (In Russ.) https://doi.org/10.15518/isjaee.2024.06.012-030

Views: 235


ISSN 1608-8298 (Print)