Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Исследование проблемы воспроизведения субсинхронных колебаний в электроэнергетических системах с солнечными электростанциями и водородными накопителями энергии с помощью обобщенных математических моделей

https://doi.org/10.15518/isjaee.2024.06.059-079

Аннотация

Во всем мире, происходит активная интеграция в электроэнергетические системы (ЭЭС) генерирующих установок с инверторным включением (ГУИН), функционирующих на базе возобновляемых источников энергии (ВИЭ). Развитие технологий ВИЭ необходимо для достижения углеродной нейтральности. В последнее время активно внедряются объекты ВИЭ на базе солнечной генерации (фотоэлектрические солнечные электростанции (ФСЭС)) в совокупности с системами накопления электрический энергии (СНЭЭ), которые могут использовать в качестве источника водород. В современных ФСЭС и водородных СНЭЭ (ВСНЭЭ) используются силовые преобразователи, которые обеспечивают подключение данных устройств к сети. Широкомасштабное внедрение таких устройств приводит к изменениям динамических свойств энергосистемы из-за особенностей функционирования силового преобразователя, выполняющего функцию инвертирования, и его системы автоматического управления. Изучение и анализ таких особенностей возможен с помощью математического моделирования. Обычно для моделирования переходных процессов используются программные комплексы по расчету электромеханических переходных процессов. В таких программных комплексах для анализа переходных процессов в ЭЭС с ФСЭС и ВСНЭЭ разработаны и используются обобщенные математические модели, которые имеют ряд особенностей и не позволяют воспроизводить полный спектр процессов при внедрении данных устройств в слабые сети. В работе предложен альтернативный всережимный вариант моделирования таких объектов в ЭЭС.

Об авторах

В. Е. Рудник
Томский политехнический университет
Россия

Рудник Владимир Евгеньевич - кандидат технических наук, ассистент отделения электроэнергетики и электротехники Инженерной школы энергетики.

634050, Томск, пр. Ленина, 30



А. Б. Аскаров
Томский политехнический университет
Россия

Аскаров Алишер Бахрамжонович - кандидат технических наук, старший преподаватель отделения электроэнергетики и электротехники Инженерной школы энергетики.

634050, Томск, пр. Ленина, 30



Б. Д. Малюта
Томский политехнический университет
Россия

Малюта Борис Дмитриевич - аспирант, ассистент отделения электроэнергетики и электротехники Инженерной школы энергетики Национального исследовательского.

634050, Томск, пр. Ленина, 30



Р. А. Уфа
Томский политехнический университет
Россия

Уфа Руслан Александрович - кандидат технических наук, доцент, доцент отделения электроэнергетики и электротехники Инженерной школы энергетики.

634050, Томск, пр. Ленина, 30



А. А. Суворов
Томский политехнический университет
Россия

Суворов Алексей Александрович - кандидат технических наук, доцент, доцент отделения электроэнергетики и электротехники Инженерной школы энергетики.

634050, Томск, пр. Ленина, 30



Список литературы

1. Renewables 2022 [Online]. Available: https://www.iea.org/reports/renewables-2022 [accessed 15 August 2023]

2. Renewable Energy Market Update – June 2023 [Online]. Available: https://www.iea.org/reports/renewable-energy-market-update-june-2023 [accessed 20 September 2023]

3. Solar (photovoltaic) panel prices: [Online]. URL: https://ourworldindata.org/grapher/solar-pvprices?time=earliest.latest [accessed 20 September 2023]

4. Suvorov A., Askarov A., Kievets A., Rudnik V. A comprehensive assessment of the stateof-the-art virtual synchronous generator models // Electric Power Systems Research, 2022, 209, 108054. https://doi.org/10.1016/j.epsr.2022.108054

5. Ruban N., Rudnik V., Askarov A., Maliuta B. Frequency control by the PV station in electric power systems with hydrogen energy storage // International Journal of Hydrogen Energy, 2023, 48(73), pp 28262-28276. https://doi.org/10.1016/j.ijhydene.2023.04.048

6. Ilyushin P., Filippov S., Kulikov A., Suslov K., Karamov D. Specific Features of Operation of Distributed Generation Facilities Based on Gas Reciprocating Units in Internal Power Systems of Industrial Entities // Machines, 2022, 10, 693. https://doi.org/10.3390/machines10080693.

7. Suvorov A., Askarov A., Bay Y., Ufa R. Freely Customized virtual generator model for grid-forming converter with hydrogen energy storage // International Journal of Hydrogen Energy, 2022, 47(82), pp. 34739-34761. https://doi.org/10.1016/j.ijhydene.2022.08.119.

8. Al-Ghussain L. Ahmad A. D., Abubaker A. M., Hassan M. A. Exploring the feasibility of green hydrogen production using excess energy from a country-scale 100 % solar-wind renewable energy system. International Journal of Hydrogen Energy, 2022, 47, pp. 21613-21633. https://doi.org/10.1016/j.ijhydene.2022.04.289

9. Şevik S. Techno-economic evaluation of a grid-connected PV-trigeneration-hydrogen production hybrid system on a university campus. International Journal of Hydrogen Energy, 47 (2022), pp. 23935-23956. https://doi.org/10.1016/j.ijhydene.2022.05.193

10. Huang S.H, et al. Voltage control challenges on weak grids with high penetration of wind generation: ERCOT experience // IEEE PES General Meeting, San Diego. – CA, 2012, pp. 1-7. https://doi.org/10.1109/PESGM.2012.6344713

11. Ramasubramanian D, et al. Positive Sequence Voltage Source Converter Mathematical Model for Use in Low Short Circuit Systems // IET Generation Transmission and Distribution, 2020, 14, pp. 87-97. https://doi.org/10.1049/iet-gtd.2019.0346

12. Cheng Y, et al. Real-World Subsynchronous Oscillation Events in Power Grids With High Penetrations of Inverter-Based Resources. IEEE Transactions on Power Systems, 2023, 38(1), pp. 316-330. https://doi.org/10.1109/TPWRS.2022.3161418

13. Yazdani A., Iravani R. Voltage-Sourced Converters in Power Systems // Hoboken, NJ, USA: Wiley. – 2010.

14. Teodorescu R., Liserre M., Rodriguez P. Grid Converters For Photovoltaic and Wind Power Systems // Hoboken, NJ, USA: Wiley. – 2011.

15. Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies, IEEE Power and Energy Society, Tech. Rep. PESTR77, May 2020. [Online]. Available: https://resourcecenter.ieeepes.org/technical-publications/technicalreports/PES_TP_TR77_PSDP_stability_051320.html [accessed 14 September 2023]

16. Bialek J, et al. Benchmarking and Validation of Cascading Failure Analysis Tools // IEEE Transactions on Power Systems, 2016, 31(6), pp. 4887-4900. https://doi.org/10.1109/TPWRS.2016.2518660

17. Ramasubramanian D., Yu D., Ayyanar D. Vittal V., Undrill J. Converter Model for Representing Converter Interfaced Generation in Large Scale Grid Simulations // IEEE Transactions on Power Systems, 2017, 32(1), pp. 765-773. https://doi.org/10.1109/TPWRS.2016.2551223

18. IEEE Std 1204-1997. IEEE Guide for Planning DC Links Terminating at AC Locations Having Low Short-Circuit Capacities. https://doi.org/10.1109/IEEESTD.1997.85949

19. Grid-Forming Inverter-Based Resources Workshop. October 13, 2021: [Online]. Available: https://www.esig.energy/event/wecc-esig-grid-forminginverter-based-resources-workshop/ [accessed 15 August 2023]

20. Liu H, et al Subsynchronous Interaction Between Direct-Drive PMSG Based Wind Farms and Weak AC Networks // IEEE Transactions on Power Systems, 2017, 32(6), PP. 4708-4720. https://doi.org/10.1109/TPWRS.2017.2682197

21. Wang C., Mishra C., Jones K. D., Vanfretti L. Identifying oscillations injected by inverterbased solar energy sources in dominion energy’s service territory using synchrophasor data and point-on-wave data. [Online]. Available: https://naspi.org/sites/default/files/2021-04/D1S1_02_wang_dominion_naspi_20210413.pdf [accessed 15 August 2023]

22. Wang C, et al. Identifying Oscillations Injected by Inverter-Based Solar Energy Sources // IEEE Power & Energy Society General Meeting (PESGM), Denver, CO, USA, 2022, pp. 1-5. https://doi.org/10.48550/arXiv.2202.11579

23. Li Y. et al. A Multi-Rate Co-Simulation of Combined Phasor-Domain and Time-Domain Models for Large-Scale Wind Farms. IEEE Transactions on Energy Conversion, 2020, 35(1), рр. 324-335. https://doi.org/10.1109/TEC.2019.2936574

24. Ruban N. Y., et al. Software and Hardware Decision Support System for Operators of Electrical Power Systems // IEEE Transactions on Power Systems, 2021, 36(5), pp. 3840-3848. https://doi.org/10.1109/TPWRS.2021.3063511

25. Martino M. et al. Main hydrogen production processes: an overview. Catalysts, 2021, 11(5), p. 547. https://doi.org/10.3390/catal11050547

26. Leijiao Ge. et al. A review of hydrogen generation, storage, and applications in power system //journal of Energy Storage, 2024, 75, 109307, https://doi.org/10.1016/j.est.2023.109307

27. Diabate M., Vriend T., Krishnamoorthy H. S., Shi J. Hydrogen and Battery – Based Energy Storage System (ESS) for Future DC Microgrids // IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 2022, pp. 1-6. https://doi.org/10.1109/PEDES56012.2022.10080550

28. Wen T. et al. Research on Modeling and the Operation Strategy of a Hydrogen-Battery Hybrid Energy Storage System for Flexible Wind Farm GridConnection // in IEEE Access, 2020, 8, pp. 79347-79356. https://doi.org/10.1109/ACCESS.2020.2990581

29. Gahleitner G. Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications // International journal of hydrogen energy, 2013, 38 (5), 2039-2061. https://doi.org/10.1016/j.ijhydene.2012.12.010

30. Susan S., Keller J. Commercial potential for renewable hydrogen in California // International journal of hydrogen energy, 2017, 42(19), 13321-13328. https://doi.org/10.1016/j.ijhydene.2017.01.005

31. Ufa R. A., Rudnik V. E., Malkova Y. Y., Bay Y. D., Kosmynina N. M. Impact of renewable generation unit on stability of power systems // International Journal of Hydrogen Energy, 2022, 47(46), 19947-19954. https://doi.org/10.1016/j.ijhydene.2022.04.141

32. Ufa R. A., Vasilev A. S., Gusev A. L., Pankratov A. V., Malkova Y. Y., Gusev A. S. Analysis of the influence of the current-voltage characteristics of the voltage rectifiers on the static characteristics of hydrogen electrolyzer load // International Journal of Hydrogen Energy, 2021, 46(68), 33670-33678. https://doi.org/10.1016/j.ijhydene.2021.07.183

33. Makaryan I. A., Efimov O. N., Gusev A. L. State-of-market and perspectives on development of lithium-ion batteries // International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2013, 06/1(127), 100-115.

34. Shi Z., Wang W., Huang Y., Li P., Dong L. Simultaneous optimization of renewable energy and energy storage capacity with the hierarchical control // CSEE Journal of Power and Energy Systems, 2022, 8(1), pp. 95-104. https://doi.org/10.17775/CSEEJPES.2019.01470

35. Xuewei S et al. Research on Energy Storage Configuration Method Based on Wind and Solar Volatility // 2020 10th International Conference on Power and Energy Systems (ICPES), Chengdu, China, 2020, pp. 464468. https://doi.org/10.1109/ICPES51309.2020.9349645

36. Li X. et al. Cooperative Dispatch of Distributed Energy Storage in Distribution Network With PV Generation Systems // IEEE Transactions on Applied Superconductivity, 2021, 31(8), pp. 1-4. https://doi.org/10.1109/TASC.2021.3117750

37. Liu X. et al. Microgrid Energy Management with Energy Storage Systems: A Review // CSEE Journal of Power and Energy Systems, 2023, 9(2), pp. 483-504. https://doi.org/10.17775/CSEEJPES.2022.04290

38. Naseri N. et al. Solar Photovoltaic Energy Storage as Hydrogen via PEM Fuel Cell for Later Conversion Back to Electricity // IECON 2019 45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 2019, pp. 4549-4554, doi: https://doi.org/10.1109/IECON.2019.8927094

39. Arsad A. Z. et al. Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions // International Journal of Hydrogen Energy, 2022, 47(39), PP. 17285-17312 0360, https://doi.org/10.1016/j.ijhydene.2022.03.208

40. Razzhivin I. A., Suvorov A. A., Ufa R. A., Andreev M. V., Askarov A. B. The energy storage mathematical models for simulation and comprehensive analysis of power system dynamics: A review. Part II // International Journal of Hydrogen Energy, 2023, 48(15), рр. 6034-6055, https://doi.org/10.1016/j.ijhydene.2022.11.102

41. Arsad A. Z. et al. Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions // International Journal of Hydrogen Energy, 2022, 47(39), 2022, рр. 17285-17312, https://doi.org/10.1016/j.ijhydene.2022.03.208

42. Diaz I. U., de Queiróz Lamas, W., Lotero R. C. Development of an optimization model for the feasibility analysis of hydrogen application as energy storage system in microgrids // International Journal of Hydrogen Energy, 2023, 48 (43), рр. 16159-16175, https://doi.org/10.1016/j.ijhydene.2023.01.128

43. Tawalbeh M., Farooq A., Martis R., AlOthman A. Optimization techniques for electrochemical devices for hydrogen production and energy storage applications // International Journal of Hydrogen Energy, 2023, https://doi.org/10.1016/j.ijhydene.2023.06.264

44. S. Fukaume, Y. Nagasaki, M. Tsuda. Stable power supply of an independent power source for a remote island using a Hybrid Energy Storage System composed of electric and hydrogen energy storage systems // International Journal of Hydrogen Energy, 2022, 47 (29), рр. 13887-13899, https://doi.org/10.1016/j.ijhydene.2022.02.142

45. N. Shamarova, K.Suslov, P. Ilyushin, I. Shushpanov. Review of Battery Energy Storage Systems Modeling in Microgrids with Renewables Considering Battery Degradation // Energies 2022, 15, 6967. https://doi.org/10.3390/en15196967

46. Zhang Z. et. Continuous operation in an electric and hydrogen hybrid energy storage system for renewable power generation and autonomous emergency power supply // International Journal of Hydrogen Energy, 2019, 44 (41), рр. 23384-23395, https://doi.org/10.1016/j.ijhydene.2019.07.028

47. Armghan H., Xu Y., Sun H., Ali N., Liu J. Event-triggered multi-time scale control and low carbon operation for electric-hydrogen DC microgrid // Applied Energy, 2024, Volume 355, https://doi.org/10.1016/j.apenergy.2023.122149

48. WECC REMTF. Solar Photovoltaic Power Plant Modeling and Validation Guideline MVWG. [Электронный ресурс]. URL: https://www.wecc.org/Reliability/Solar%20PV%20Plant%20Modeling%20and%20Validation%20Guidline.pdf (дата обращения: 10.02.2023)

49. Clark K., Miller N. W., Walling R. Modeling of GE Solar Photovoltaic Plants for Grid Studies. General Electr. Int. Rep. Ver. 1.1. 2010.

50. Pourbeik P. et al. Generic Dynamic Models for Modeling Wind Power Plants and Other Renewable Technologies in Large-Scale Power System Studies // IEEE Transactions on Energy Conversion, 2017, 32(3), 2017, pp. 1108-1116, https://doi.org/10.1109/PESGM.2018.8585944

51. Machlev R. et al. Verification of Utility-Scale Solar Photovoltaic Plant Models for Dynamic Studies of Transmission Networks // Energies, 2020, 13, https://doi.org/3191.10.3390/en13123191

52. Xu X. K., Bishop M., Oikarinen D. G., Hao C. Application and modeling of battery energy storage in power systems // CSEE Journal of Power and Energy Systems, 2016, 2(3), pp. 82-90, https://doi.org/10.17775/CSEEJPES.2016.00039.

53. Ruban N., Rudnik V., Razzhivin I., Kievec A. A hybrid model of photovoltaic power stations for model ling tasks of large power systems. EEA Electrotehnica, Electronica, Automatica, 2021, 69, pp. 43-49, https://doi. org/10.46904/eea.21.69.4.1108005

54. Ufa R., Vasiliev A., Ruban N., Rudnik V. Hybrid real-time simulator for setting of automatic secondary frequency and active power control // EEA Electrotehnica, Electronica, Automatica, 2020, 68(2), pp. 41-48.

55. Sun Yin et al. The Impact of PLL Dynamics on the Low Inertia Power Grid: A Case Study of Bonaire Island Power System // Power Electronics in Renewable Energy Systems, 2019, 12(7). https://doi.org/10.3390/en12071259

56. Huang L., Xin H., Wang Z. Damping LowFrequency Oscillations Through VSC-HVdc Stations Operated as Virtual Synchronous Machine. IEEE Transactions on Power Electronics, 2019, 34(6), pp. 5803-5818, https://doi.org/10.1109/TPEL.2018.2866523

57. Mohammadpour H. A., Santi E. SSR Damping Controller Design and Optimal Placement in Rotor-Side and Grid-Side Converters of Series-Compensated DFIGBased Wind Farm // IEEE Transactions on Sustainable Energy, 2015, 6(2), pp. 388-399, https://doi.org/10.1109/TSTE.2014.2380782

58. Wang X. et al. An Active Damper for Stabilizing Power-Electronics-Based AC Systems // IEEE Transactions on Power Electronics, 2014, 29(7), pp. 3318-3329, https://doi.org/10.1109/APEC.2013.6520441

59. Alawasa K. M., Mohamed Y. A. -R. I. A Simple Approach to Damp SSR in Series-Compensated Systems via Reshaping the Output Admittance of a Nearby VSC-Based System // IEEE Transactions on Industrial Electronics, 2015, 62(5), pp. 2673-2682. https://doi.org/10.1109/TIE.2014.2363622


Рецензия

Для цитирования:


Рудник В.Е., Аскаров А.Б., Малюта Б.Д., Уфа Р.А., Суворов А.А. Исследование проблемы воспроизведения субсинхронных колебаний в электроэнергетических системах с солнечными электростанциями и водородными накопителями энергии с помощью обобщенных математических моделей. Альтернативная энергетика и экология (ISJAEE). 2024;(6):59-79. https://doi.org/10.15518/isjaee.2024.06.059-079

For citation:


Rudnik V.E., Askarov A.B., Maliuta B.D., Ufa R.A., Suvorov A.A. Analysis of subsynchronous oscillations simulations by generic model of PV and hydrogen systems in bulk power system. Alternative Energy and Ecology (ISJAEE). 2024;(6):59-79. (In Russ.) https://doi.org/10.15518/isjaee.2024.06.059-079

Просмотров: 169


ISSN 1608-8298 (Print)