Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Composite corrosion-resistant bioactive coating for Ni-Ti alloys

https://doi.org/10.15518/isjaee.2024.06.103-111

Abstract

The use of NiTi as a material for implants is possible due to its bioinertness. But at the same time, it is necessary to provide it, firstly, with additional protection, since when interacting with living tissues, NiTi undergoes corrosion, and secondly, to enhance the bioactivity of the surface in order to accelerate the regeneration of damaged tissue. Therefore, to solve this problem, a two-layer coating was produced using magnetron and plasma-assisted RF sputtering, one part of which prevents corrosion, and the second increases bioactivity. It has been established that the formed calcium phosphate coating has a dense and pore-free structure, and the coating itself includes elements of calcium, phosphorus and oxygen. Data on the elemental composition correlate well with the data of X-ray diffraction analysis, according to which the coating consists of hydroxyapatite of the hexagonal system. The MTT test conducted with groups of samples without and with calcium phosphate coating showed that the percentage of dead cells was 11 ± 4% and 12 ± 3%, respectively. Preliminary in vitro studies support the osteogenic activity of the coated samples. The results obtained show that in the future these materials can be used for the manufacture of bone implants, since the formed hydroxyapatite is most similar to biological one. At the same time, it is necessary to further expand studies of osteogenesis on these coatings to ensure their ability to positively influence the process of bone tissue formation.

About the Authors

E. S. Marchenko
National Research Tomsk State University
Russian Federation

Marchenko Ekaterina S. - Associate Professor, Doctor of Physics and Mathematics. Sci.

634050, Tomsk, Lenina Ave. 36



G. A. Baigonakova
National Research Tomsk State University
Russian Federation

Baigonakova Gulsharat A. - senior researcher, Ph.D. physics and mathematics Sci.

634050, Tomsk, Lenina Ave. 36



K. M. Dubovikov
National Research Tomsk State University
Russian Federation

Dubovikov Kirill M. - graduate student, junior researcher

634050, Tomsk, Lenina Ave. 36



E. B. Topolnitskiy
Siberian State Medical University
Russian Federation

Topolnitskiy Evgeniy B. - thoracic surgeon of the highest category, surgeon of the highest category, associate professor, Doctor of Science. honey. Sci.

634050, Tomsk, Moskovsky Trakt, 2



References

1. Hench L. L. Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 1991; 74:1487–1510. DOI: 10.1111/j.1151-2916.1991. tb 07132.x.

2. Kravanja K. A., Xhanari K., Marevci M. K., Maver U., Finšgar M. Ketoprofen-loaded PLGA-based bioactive coating prepared by supercritical foaming on a TiAl6V4 substrate for local drug delivery in orthopedic applications. Prog. Org. Coat. 2024; 186:108026. DOI: 10.1016/j.porgcoat.2023.108026.

3. Garrido B., Martin-Morata A., Dosta S., Cano I.G. Improving the bond strength of bioactive glass coatings obtained by atmospheric plasma spraying. Surf. Coat. Technol. 2023; 470:129837. DOI: 10.1016/j.surfcoat.2023.129837

4. Hiromoto S. Self-healing property of hydroxyapatite and octacalcium phosphate coatings on pure magnesium and magnesium alloy. Corros. Sci. 2015; 100:284–294. DOI: 10.1016/j.corsci.2015.08.001

5. Zhang Y., Roux C., Rouchaud A., Meddahi-Pellé A., Gueguen V., Mangeney C. et al. Recent advances in Fe-based bioresorbable stents: Materials design and biosafety. Bioact. Mater. 2024; 31:333–354. DOI: 10.1016/j.bioactmat.2023.07.024.

6. Choi D. H., Kim H. T., Kim Y., Park K., Kim M. S., Lee J. H. et al. Nature-derived, biocompatible silibinin based bioresorbable neuromorphic device for implantable medical electronics. Appl. Surf. Sci. 2023; 621:156814. DOI: 10.1016/j.apsusc.2023.156814.

7. Shtin V., Novikov V., Chekalkin T., Gunther V., Marchenko E., Choynzonov E. et al. Repair of Orbital Post-Traumatic Wall Defects by Custom-Made TiNi Mesh Endografts. J. Funct. Biomater. 2019 27;10(3):27. DOI: 10.3390/jfb10030027.

8. Song D., Yu C., Zhang C., Kang G. Superelasticity degradation of NiTi shape memory alloy in wide ranges of temperature and loading level: Experimental observation and micromechanical constitutive model. Int. J. Plast. 2023; 161:103487. DOI: 10.1016/j.ijplas.2022.103487

9. Zhang J., Wang S., Hu P., Zhang Y., Ding H., Huang Y. A novel strategy for fabricating phase transforming NiTi shape memory alloy via multiple processes of severe plastic deformation. Mater. Lett. 2023:135439. DOI: 10.1016/j.matlet.2023.135439.

10. Ohtsu N., Yamasaki K., Taniho H., Konaka Y., Tate K. Pulsed anodization of NiTi alloy to form a biofunctional Ni-free oxide layer for corrosion protection and hydrophilicity. Surf. Coat. Technol. 2021; 412:127039. DOI: 10.1016/j.surfcoat.2021.127039.

11. Gyunter V. E., Marchenko E. S., Gyunter S. V., Baigonakova G. A. The Influence of the Surface Layer on the Combination of Properties of Thin TiNi Alloy Wires. Tech. Phys. Lett. 2018; 44:811–813. DOI: 10.1134/S1063785018090195.

12. Kazemi M., Ahangarani S., Esmailian M., Shanaghi A. Investigation on the corrosion behavior and biocompatibility of Ti-6Al-4V implant coated with HA/TiN dual layer for medical applications. Surf. Coat. Technol. 2020; 397:126044. DOI: 10.1016/j.surfcoat.2020.126044.

13. Jin S., Zhang Y., Wang Q., Zhang D., Zhang S. Influence of TiN coating on the biocompatibility of medical NiTi alloy. Colloids Surf. B. 2013; 101:343–349. DOI: 10.1016/j.colsurfb.2012.06.029.

14. Baigonakova G. A., Marchenko E. S., Yasenchuk Yu. F., Kokorev O. V., Vorozhtsov A. B., Kulbakin D. E. Microstructural characterization, wettability and cytocompatibility of gradient coatings synthesized by gas nitriding of three-layer Ti/Ni/Ti nanolaminates magnetron sputtered on the TiNi substrate. Surf. Coat. Technol. 2022; 436:128291. DOI: 10.1016/j.surfcoat.2022.128291.

15. Jankowska E., Makowiecka M., Jurczyk M. Electrochemical performance of sealed Nisingle bondMH batteries using nanocrystalline TiNi-type hydride electrodes. Renew. Energy. 2008; 33(2):211–215. DOI: 10.1016/j.renene.2007.05.026

16. Wang C. S., Lei Y. Q., Wang Q. D. Effects of Nb and Pd on the electrochemical properties of a Ti-Ni hydrogen-storage electrode. J. Power Sources. 1998;70(2):222– 227. DOI: 10.1016/S0378-7753(97)02674-8

17. Liu J., Gao X., Song D., Yunshi Z., Shihai Y. The characteristics of the microencapsulated Ti–Ni alloys and their electrodes. J. Alloys Compd. 1995; 231(1– 2):852–855. DOI: 10.1016/0925-8388(95)01771-2

18. Hosni B., Khaldi C., ElKedim O., Fenineche N., Lamloumi J. Electrochemical properties of Ti2Ni hydrogen storage alloy. Int. J. Hydrogen Energy. 2017; 42(2):1420–1428. DOI: 10.1016/j.ijhydene.2016.04.032

19. Ribeiro R. M., Lemus L. F., dos Santos D. S. Hydrogen AbsorptionStudy of Ti-Base Alloys Performed by Melt-Spinning. Mater. Res. 2013; 16:679–682. DOI: 10.1590/S1516-14392013005000049

20. Balcerzak M., Jurczyk M. Influence of Gaseous Activation on Hydrogen Sorption Properties of TiNi and Ti2Ni Alloys. J. Mater. Eng. Perform. 2015; 24(4):1710– 1717. DOI: 10.1007/s11665-015-1445-x

21. Wu T., Lu T., Shi H., Wang J., Ye J. Enhanced osteogenesis, angiogenesis and inhibited osteoclastogenesis of a calcium phosphate cement incorporated with strontium doped calcium silicate bioceramic. Ceram. Int. 2023; 49(4):6630–6645. DOI: 10.1016/j.ceramint.2022.10.142

22. Shirdar M. R., Sudin I., Taheri M. M., Keyvanfar A., Yusop M. Z. M., Kadir M. R. A. A novel hydroxyapatite composite reinforced with titanium nanotubes coated on Co-Cr-based alloy. Vacuum 2015; 122:82–89. DOI: 10.1016/j.vacuum.2015.09.008.

23. Narayanan R., Seshadri S. K., Kwon T. Y., Kim K. H. Calcium Phosphate-Based Coatings on Titanium and Its Alloys. J. Biomed. Mater. Res. B Appl. Biomater. 2008;85(1):279-299. DOI: 10.1002/jbm.b.30932.


Review

For citations:


Marchenko E.S., Baigonakova G.A., Dubovikov K.M., Topolnitskiy E.B. Composite corrosion-resistant bioactive coating for Ni-Ti alloys. Alternative Energy and Ecology (ISJAEE). 2024;(6):103-111. (In Russ.) https://doi.org/10.15518/isjaee.2024.06.103-111

Views: 186


ISSN 1608-8298 (Print)