Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Достижения и проблемы интеграции топливных элементов в электротранспорт: комплексный анализ

https://doi.org/10.15518/isjaee.2024.07.250-271

Аннотация

Технология топливных элементов становится многообещающим экологическим решением, предлагающим смягчение последствий глобального потепления, загрязнения воздуха и энергетических кризисов. Этот экологически чистый подход становится свидетелем всплеска внедрения в автомобильный сектор: автобусы, автомобили, скутеры, вилочные погрузчики и т. д. на топливных элементах становятся все более распространенными. Автомобильная промышленность быстро развивает технологию топливных элементов, приближаясь к коммерциализации автомобилей на их основе. По мере преодоления различных технических препятствий и снижения затрат автомобили на топливных элементах могут стать конкурентоспособной силой на автомобильном рынке, представляя собой превосходное решение для экологической устойчивости и энергоэффективности. В этом обзорном документе рассматриваются основы топливных элементов, их характеристики и применение в автомобильной сфере, а также исследуются их перспективы по сравнению с традиционными технологиями. Кроме того, он проливает свет на существующие исследования и промышленные разработки в области технологий водорода и топливных элементов. Кроме того, дается всестороннее сравнение различных автомобилей на топливных элементах, которые уже поступили в продажу, что позволяет читателям понять текущую ситуацию на рынке. В обзоре также анализируются преимущества и проблемы, связанные с технологией топливных элементов, предлагается представление о будущей траектории ее развития. Благодаря этому всестороннему исследованию, читатели смогут получить более глубокое понимание технологии топливных элементов и ее потенциала в революционном преобразовании автомобильной промышленности.

Об авторах

Манприт Сингх
Кафедра машиностроения, Инженерно-технологический институт Университета Читкара
Индия

Манприт Сингх, доцент 

140401, Пенджаб, Раджпура



Маниш Кумар Сингла
Кафедра междисциплинарных инженерных курсов, Инженерно-технологический институт Университета Читкара ; Исследовательский центр прикладных наук, Частный университет прикладных наук
Индия

Маниш Кумар Сингла, доцент

140401, Пенджаб, Раджпура

11931, Иордания, Амман



М. Х. Сафаралиев
Кафедра автоматизированных электрических систем Уральского федерального университета
Россия

Сафаралиев Муродбек Холназарович, к.т.н., старший научный сотрудник

620002, Екатеринбург



Кулвиндер Сингх
Кафедра машиностроения, Инженерно-технологический институт Университета Читкара
Индия

Кулвиндер Сингх, профессор

140401, Пенджаб, Раджпура



Исмоил Одинаев
Кафедра автоматизированных электрических систем Уральского федерального университета
Россия

Исмоил Одинаев, к.т.н., научный сотрудник кафедры Автоматизированных электрических систем

620002, Екатеринбург



Амир Абдель Менаем
Кафедра автоматизированных электрических систем Уральского федерального университета ; Факультет электротехники, Университет Мансура
Россия

Амир Абдель Менаем, кандидат технических наук, научный сотрудник кафедры «Автоматизированные электрические системы»

620002, Екатеринбург

35516, провинция Дакалия, Мансура, улица Эль-Гомхурия, Египет



Список литературы

1. Fathabadi H. Fuel cell hybrid electric vehicle (FCHEV): novel fuel cell/SC hybrid pow- er generation system. Energy Convers Manag 2018. https://doi.org/10.1016/j.enconman. 2017.11.001.

2. Selmi T., Khadhraoui A., Cherif A. Fuel cell– based electric vehicles technologies and challenges. Environ Sci Pollut Control Ser 2022. https://doi.org/10.1007/s11356-022-23171-w.

3. Wu D., Ren J., Davies H., Shang J., Haas O. Intelligent hydrogen fuel cell range extender for battery electric vehicles. World Electric Vehicle Journal 2019. https://doi.org/10.3390/wevj10020029.

4. Ganesh A. H., Xu B. A review of reinforcement learning based energy management systems for electrified powertrains: progress, challenge, and potential solution. Renew Sustain Energy Rev 2022. https://doi.org/10.1016/j.rser.2021.111833.

5. Muthukumar M., Rengarajan N., Velliyangiri B., Omprakas M. A., Rohit C. B., Raja U. K. The development of fuel cell electric vehicles – a review. Mater Today Proc 2021. https://doi.org/10.1016/j.matpr.2020.03.679.

6. Wang Y., Seo B., Wang B., Zamel N., Jiao K., Adroher X. C. Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology. Energy and AI; 2020. https://doi.org/10.1016/j.egyai.2020.100014.

7. Kim H., Eom M., Kim B. I. Development of strategic hydrogen refueling station deployment plan for Korea. Int J Hydrogen Energy 2020. https://doi.org/10.1016/j.ijhydene.2020.04.246.

8. Kluschke P., Neumann F. Interaction of a hydrogen refueling station network for heavy-duty vehicles and the power system in Germany for 2050. ArXiv 2019.

9. Rose P. K., Neumann F. Hydrogen refueling station networks for heavy-duty vehicles in future power systems. Transp Res D Transp Environ 2020. https://doi.org/10.1016/j.trd.2020.102358.

10. Pramuanjaroenkij A., Kakaç S. The fuel cell electric vehicles: the highlight review. Int J Hydrogen Energy 2023;48: 9401–25.

11. Zhao X., Wang L., Zhou Y., Pan B., Wang R., Wang L. et al. Energy management strategies for fuel cell hybrid electric vehicles: classification, comparison, and outlook. Energy Convers Manag, 2022; 270:116179.

12. Yu P., Li M., Wang Y., Chen Z. Fuel cell hybrid electric vehicles: a review of topologies and energy management strategies. World Electric Vehicle Journal 2022. https://doi.org/10.3390/wevj13090172.

13. Fitri Desanti A., Uta Nugraha Y., Nur Yuniarto M., Wikarta A. Review of the topology and energy management hybrid energy storage on electric vehicle. IOP Conf Ser Mater Sci Eng 2019. https://doi.org/10.1088/1757-899X/694/1/012006.

14. Baba M. A., Labbadi M., Cherkaoui M., Maaroufi M. Fuel cell electric vehicles: a review of current power electronic converters Topologies and techni-cal challenges. IOP Conf Ser Earth Environ Sci 2021. https://doi.org/10.1088/1755-1315/785/1/012011.

15. Urooj S., Singh T., Amir M., Tariq M. Optimal design of power transformer with advance core material using ANSYS technique. European Journal of Electrical Engineering and Computer Science, 2020; 4:1–17.

16. Urooj S., Amir M., Khan A., Tariq M. An adaptive neuro-fuzzy based methodology for harmonic analysis of a power transformer, 101; 2021. p. 1–10.

17. Amir M., Zaheeruddin, Haque A. Integration of EVs aggregator with microgrid and impact of V2G power on peak regulation. In: 2021 IEEE 4th international conference on computing, power and communication technologies (GUCON). IEEE; 2021. p. 1–6.

18. Awogbemi O., Von Kallon D. V., Onuh E. I., Aigbodion V. S. An overview of the classification, production and utilization of biofuels for internal combustion engine applications. Energies 2021. https://doi.org/10.3390/en14185687.

19. Khalid M. R., Khan I. A., Hameed S., Asghar M. S. J., Ro J. S. A comprehensive review on structural topologies, power levels, energy storage systems, and standards for electric vehicle charging stations and their impacts on grid. IEEE access 2021. https://doi.org/10.1109/ACCESS.2021.3112189.

20. Leach F., Kalghatgi G., Stone R., Miles P. The scope for improving the efficiency and environmental impact of internal combustion engines. Transport Eng 2020. https://doi.org/10.1016/j.treng.2020.100005.

21. Mykhalevych M., Shuklinov S., Dvadnenko V., Yaryta O. Prospects of «mild hybrid» technology for creating a hybridization system of vehicles. 2022. https://doi.org/10.30977/at.2019-8342.2022.50.0.04.

22. Du B., Yin X., Yang Y. Robust control of mode transition for a single-motor full hybrid electric vehicle. Advances in Mechanical Engineering. 2017. https://doi.org/10.1177/1687814017717428.

23. Shafiq S., Irshad U. Bin, Al-Muhaini M., Djokic S. Z., Akram U. Reliability evaluation of composite power systems: evaluating the impact of full and plug-in hybrid electric vehicles. IEEE Access; 2020. https://doi.org/10.1109/ACCESS.2020.3003369.

24. Tran D. D., Vafaeipour M., El Baghdadi M., Barrero R., Van Mierlo J., Hegazy O. Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: topologies and integrated energy management strategies. Renewable and Sustainable Energy Reviews. 2020. https://doi.org/10.1016/j.rser.2019.109596.

25. Fletcher T., Kalantzis N., Ahmedov A., Yuan R., Ebrahimi K., Dutta N. et al. Holistic thermal energy modelling for full hybrid electric vehicles (HEVs). SAE Technical Papers 2020. https://doi.org/10.4271/2020-01-0151.

26. Duarte G. O., Varella R. A., Gonçalves G. A., Farias T. L. Effect of battery state of charge on fuel use and pollutant emissions of a full hybrid electric light duty vehicle. J Power Sources 2014. https://doi.org/10.1016/j.jpowsour.2013.07.103.

27. Mandev A., Plotz P., Sprei F, Tal G. Empirical charging behavior of plug-in hybrid electric vehicles. Appl Energy, 2022. https://doi.org/10.1016/j.apenergy.2022.119293.

28. M. Waseem et al. Green Energy and Intelligent Transportation 2 (2023) 10012117.

29. Clement-Nyns K., Haesen E., Driesen J. The impact of Charging plug-in hybrid electric vehicles on a residential distribution grid. IEEE Transactions on Power Systems. 2010. https://doi.org/10.1109/TPWRS.2009.2036481.

30. Krupa J. S., Rizzo D. M., Eppstein M. J., Brad Lanute D., Gaalema D. E., Lakkaraju K. et al. Analysis of a consumer survey on plug-in hybrid electric vehicles. Transp Res Part A Policy Pract. 2014. https://doi.org/10.1016/j.tra.2014.02.019.

31. Raghavan S. S., Tal G. Plug-in hybrid electric vehicle observed utility factor: why the observed electrification performance differ from expectations. Int J Sustain Transp, 2022. https://doi.org/10.1080/15568318.2020.1849469.

32. Plotz P., Moll C., Bieker G., Mock P. From lab-to-road: real-world fuel consumption and CO2 emissions of plug-in hybrid electric vehicles. Environ Res Lett, 2021. https://doi.org/10.1088/1748-9326/abef8c.

33. Millo F., Rolando L., Fuso R., Mallamo F. Real CO2 emissions benefits and end user’s operating costs of a plug-in Hybrid Electric Vehicle. Appl Energy, 2014. https://doi.org/10.1016/j.apenergy.2013.09.014.

34. Konig A., Nicoletti L., Schröder D., Wolff S., Waclaw A., Lienkamp M. An overview of parameter and cost for battery electric vehicles. World Electric Vehicle Journal, 2021. https://doi.org/10.3390/wevj12010021.

35. Burs L., Roemer E., Worm S., Masini A. Are they all equal? Uncovering adopter groups of battery electric vehicles. Sustainability (Switzerland), 2020. https://doi.org/10.3390/su12072815.

36. Jin F., Yao E., An K. Analysis of the potential demand for battery electric vehicle sharing: mode share and spatiotemporal distribution. J Transport Geogr, 2020. https://doi.org/10.1016/j.jtrangeo.2019.102630.

37. Kawamoto R., Mochizuki H., Moriguchi Y., Nakano T., Motohashi M., Sakai Y. et al. Estimation of CO2 Emissions of internal combustion engine vehicle and battery electric vehicle using LCA. Sustainability (Switzerland), 2019. https://doi.org/10.3390/su11092690.

38. Liu Z., Song J., Kubal J., Susarla N., Knehr K. W., Islam E. et al. Comparing total cost of ownership of battery electric vehicles and internal combustion engine vehicles. Energy Pol, 2021. https://doi.org/10.1016/j.enpol.2021.112564.

39. Mahmoudzadeh Andwari A., Pesiridis A., Ra-joo S., Martinez-Botas R., Esfahanian V. A review of Battery Electric Vehicle technology and readiness levels. Renew Sustain Energy Rev, 2017. https://doi.org/10.1016/j.rser.2017.03.138.

40. Peksen M. M. Artificial intelligence-based machine learning toward the solution of climate-friendly hydrogen fuel cell electric vehicles. Vehicles, 2022. https://doi.org/10.3390/vehicles4030038.

41. Trencher G. Strategies to accelerate the production and diffusion of fuel cell electric vehicles: experiences from California. Energy Rep, 2020. https://doi.org/10.1016/j.egyr.2020.09.008.

42. Rasic D., Katrasnik T. Multi-domain and Multi-scale model of a fuel cell electric vehicle to predict the effect of the operating conditions and component sizing on fuel cell degradation. Energy Convers Manag, 2022. https://doi.org/10.1016/j.enconman.2022.116024.

43. Na W., Park T., Kim T., Kwak S. Light fuel-cell hybrid electric vehicles based on predictive controllers. IEEE Trans Veh Technol, 2011;60:89–97.

44. Sulaiman N., Hannan M. A., Mohamed A., Ker P. J., Majlan E. H., Wan Daud W. R. Optimization of energy management system for fuel-cell hybrid electric vehicles: issues and recommendations. Appl Energy, 2018. https://doi.org/10.1016/j.apenergy.2018.07.087.

45. Manoharan Y., Hosseini S. E., Butler B., Alzhahrani H., Senior B. T. F., Ashuri T. et al. Hydrogen fuel cell vehicles; Current status and future prospect. Switzerland: Applied Sciences; 2019. https://doi.org/10.3390/app9112296.

46. Luo Y., Wu Y., Li B., Mo T., Li Y., Feng S. P. et al. Development and application of fuel cells in the automobile industry. J Energy Storage, 2021. https://doi.org/10.1016/j.est.2021.103124.

47. Melo S. P., Toghyani S., Cerdas F., Liu X., Gao X., Lindner L. et al. Model-based assessment of the environmental impacts of fuel cell systems designed for eVTOLs. Int J Hydrogen Energy, 2023. https://doi.org/10.1016/j.ijhydene.2022.10.083.

48. Pardhi S., Chakraborty S., Tran D. D., El Baghdadi M., Wilkins S, Hegazy O. A review of fuel cell powertrains for long-haul heavy-duty vehicles: technology, hydrogen, energy and thermal management solutions. Energies, 2022. https://doi.org/10.3390/en15249557.

49. Trencher G., Edianto A. Drivers and barriers to the adoption of fuel cell passenger vehicles and buses in Germany. Energies, 2021. DOI: https://doi.org/10.3390/en14040833.

50. Wang Y., Pang Y., Xu H., Martinez A., Chen K. S. PEM Fuel cell and electrolysis cell technologies and hydrogen infrastructure development – a review. Energy Environ Sci, 2022. DOI: https://doi.org/10.1039/d2ee00790h.

51. Sathyamurthy R., Bhaskar K., Solomon J. M., Anaimuthu S., Vinayagam N. K. A review on PEM fuel cells used for automotive applications, models and hydrogen storage for hybrid electric fuel cell vehicle. SAE Technical Papers, 2020. DOI: https://doi.org/10.4271/2020-01-5173.

52. Ko J., Ju H. Comparison of numerical simulation results and experimental data during cold-start of polymer electrolyte fuel cells. Appl Energy, 2012. DOI: https://doi.org/10.1016/j.apenergy.2012.02.007.

53. Wan Z., Chang H., Shu S., Wang Y., Tang H. A review on cold start of proton exchange membrane fuel cells. Energies, 2014. DOI: https://doi.org/10.3390/en7053179.

54. Luo Y., Jiao K. Cold start of proton exchange membrane fuel cell. Prog Energy Combust Sci, 2018. DOI: https://doi.org/10.1016/j.pecs.2017.10.003.

55. Wang Y. Analysis of the key parameters in the cold start of polymer electrolyte fuel cells. J Electrochem Soc, 2007. DOI: https://doi.org/10.1149/1.2767849.

56. Wang Y., Mukherjee P. P., Mishler J., Mukundan R., Borup R. L. Cold start of polymer electrolyte fuel cells: three-stage startup characterization. Electrochim Acta, 2010. DOI: https://doi.org/10.1016/j.electacta.2009.12.029.

57. Mishler J., Wang Y., Mukherjee P. P., Mukundan R., Borup R. L. Subfreezing operation of polymer electrolyte fuel cells: ice formation and cell performance loss. Electrochim Acta, 2012;65:127–33.

58. Chen Q., Zhang G., Zhang X., Sun C., Jiao K., Wang Y. Thermal management of polymer electrolyte membrane fuel cells: a review of cooling methods, material properties, and durability. Appl Energy, 2021. DOI: https://doi.org/10.1016/j.apenergy.2021.116496.

59. Ozdoğan E., Hüner B., Süzen Y. O., Esiyok T., Uzgoren I. N., Kıstı M. et al. Effects of tank heating on hydrogen release from metal hydride system in VoltaFCEV Fuel Cell Electric Vehicle. Int J Hydrogen Energy, 2023. DOI: https://doi.org/10.1016/j.ijhydene.2022.07.080.

60. Whiston M. M., Lima Azevedo I. M., Litster S., Samaras C., Whitefoot K. S., Whitacre J. F. Hydrogen storage for fuel cell electric vehicles: expert elicitation and a levelized cost of driving model. Environ Sci Technol, 2021. DOI: https://doi.org/10.1021/acs.est.0c04145.

61. Di Giorgio P., Di Ilio G., Jannelli E., Conte F. V. Innovative battery thermal management system based on hydrogen storage in metal hydrides for fuel cell hybrid electric vehicles. Appl Energy, 2022. DOI: https://doi.org/10.1016/j.apenergy.2022.118935.

62. Sorlei I. S., Bizon N., Thounthong P., Varlam M., Carcadea E., Culcer M. et al. Fuel cell electric vehicles – a brief review of current topologies and energy management strategies. Energies, 2021. DOI: https://doi.org/10.3390/en14010252.

63. Tian M., Rochat S., Polak-Krasna K., Holyfield L. T., Burrows A. D., Bowen C. R. et al. Nanoporous polymer-based composites for enhanced hydrogen stor-age. Adsorption, 2019. DOI: https://doi.org/10.1007/s10450-019-00065-x.

64. Banham D., Ye S. Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: an industrial perspective. ACS Energy Lett, 2017. DOI: https://doi.org/10.1021/acsenergylett.6b00644.

65. Wang Y., Ruiz Diaz D. F., Chen K. S., Wang Z., Adroher X. C. Materials, technological status, and fundamentals of PEM fuel cells – a review. Mater Today, 2020. DOI: https://doi.org/10.1016/j.mattod.2019.06.005.

66. Thompson S. T., James B. D., Huya-Kouadio J. M., Houchins C., DeSantis D. A., Ahluwalia R. et al. Direct hydrogen fuel cell electric vehicle cost analysis: system and high-volume manufacturing description, validation, and outlook. J Power Sources, 2018. DOI: https://doi.org/10.1016/j.jpowsour.2018.07.100.

67. Zhu F., Luo L., Wu A., Wang C., Cheng X., Shen S. et al. Improving the high-current-density performance of PEMFC through much enhanced utilization of platinum electrocatalysts on carbon. ACS Appl Mater Interfaces, 2020. DOI: https://doi.org/10.1021/acsa-mi.0c06981.

68. Ramaswamy N., Gu W., Ziegelbauer J. M., Kumaraguru S. Carbon support microstructure impact on high current density transport resistances in PEMFC cathode. J Electrochem Soc, 2020. DOI: https://doi.org/10.1149/1945-7111/ab819c.

69. Jayakumar A., Madheswaran D. K., Kannan A. M., Sureshvaran U., Sathish J. Can hydrogen be the sustainable fuel for mobility in India in the global context? Int J Hydrogen Energy, 2022. https://doi.org/10.1016/j.ijhydene.2022.07.272.

70. Barilo N. F., Weiner S. C., James C. W. Overview of the DOE hydrogen safety, codes and standards program, part 2: hydrogen and fuel cells: emphasizing safety to enable commercialization. Int J Hydrogen Energy, 2017. https://doi.org/10.1016/j.ijhydene.2016.04.070.

71. Moretto P., Quong S. Legal requirements, technical regulations, codes, and standards for hydrogen safety. Hydrogen safety for energy applications: engineering design, risk assessment, and codes and standards. – 2022. https://doi.org/10.1016/B978-0-12-820492-4.00003-8.

72. Lukic S. M., Cao Jian, Bansal R. C., Rodriguez F., Emadi A. Energy storage systems for automotive applications. IEEE Trans Ind Electron, 2008;55:2258–67.

73. Khaligh A., Li Zhihao. Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art. IEEE Trans Veh Technol, 2010;59:2806–14.

74. Vazquez S., Lukic S. M., Galvan E., Franquelo L. G., Carrasco J. M. Energy storage systems for transport and grid applications. IEEE Trans Ind Electron, 2010. https://doi.org/10.1109/TIE.2010.2076414.

75. Zakeri B., Syri S. Electrical energy storage systems: a comparative life cycle cost analysis. Renew Sustain Energy Rev, 2015. https://doi.org/10.1016/j.rser.2014.10.011.

76. Lu S., Corzine K. A., Ferdowsi M. A new battery/ultracapacitor energy storage system design and its motor drive integration for hybrid electric vehicles. IEEE Trans Veh Technol, 2007. https://doi.org/10.1109/TVT.2007.896971.

77. Moon D., Park J., Choi S. New interleaved current-fed resonant converter with significantly reduced high current side output filter for EV and HEV applications. IEEE trans power electron. – 2015. https://doi.org/10.1109/TPEL.2014.2360470.

78. Lee I. O. Hybrid PWM-resonant converter for electric vehicle on-board battery chargers. IEEE trans power electron. – 2016. https://doi.org/10.1109/TPEL.2015.2456635.

79. Amjad S., Neelakrishnan S., Rudramoorthy R. Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles. Renew Sustain Energy Rev, 2010. https://doi.org/10.1016/j.rser.2009.11.001.

80. Hu H., Lu C., Tan J., Liu S., Xuan D. Effective energy management strategy based on deep reinforcement learning for fuel cell hybrid vehicle considering multiple performance of integrated energy system. Int J Energy Res, 2022. https://doi.org/10.1002/er.8731.

81. Venkatasatish R., Dhanamjayulu C. Reinforcement learning based energy management systems and hydrogen refuelling stations for fuel cell electric vehicles: an overview. Int J Hydrogen Energy, 2022. https://doi.org/10.1016/j.ijhydene.2022.06.088.

82. Farajollahi A. H., Rostami M., Marefati M. A hybrid-electric propulsion system for an unmanned aerial vehicle based on proton exchange membrane fuel cell, battery, and electric motor. Energy Sources, Part A: recovery, Utilization and Environmental Effects. – 2022. https://doi.org/10.1080/15567036.2022.2051644.

83. Wang B., Zhao D., Li W., Wang Z., Huang Y., You Y. et al. Current technologies and challenges of applying fuel cell hybrid propulsion systems in unmanned aerial vehicles. Progress in Aerospace Sciences. – 2020. https://doi.org/10.1016/j.paerosci.2020.100620.

84. Szałek A., Pielecha I., Cieslik W. Fuel cell electric vehicle (Fcev) energy flow analysis in real driving conditions (rdc). Energies (Basel). – 2021. https://doi.org/10.3390/en14165018.

85. Wang G., Yu Y., Liu H., Gong C., Wen S., Wang X. et al. Progress on design and development of polymer electrolyte membrane fuel cell systems for vehicle applications: a review. Fuel Processing Technology, 2018. https://doi.org/10.1016/j.fuproc.2018.06.013.

86. Thounthong P., Raël S. & Davat B. (2005,March). Utilizing fuel cell and supercapacitors for automotive hybrid electrical system. In Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005. (Vol. 1, pp. 90-96). IEEE.

87. Rodatz P., Garcia O., Guzzella L., Büchi F., Bärtschi M., Tsukada A. ... & Wokaun, A. (2003). Performance and operational characteristics of a hybrid vehicle powered by fuel cells and supercapacitors. SAE transactions, 692-703.

88. Hames Y., Kaya K., Baltacioglu E., Turksoy A. Analysis of the control strategies for fuel saving in the hydrogen fuel cell vehicles. Int J Hydrogen Energy, 2018. https://doi.org/10.1016/j.ijhydene.2017.12.150.

89. Toyota FCHV-adv Hydrogen SUV Review | Hydrogen Cars Now. https://www.hydrogencarsnow.com/index.php/toyota-fchv/. Accessed 1, April, 2023.

90. Amir M., Zaheeruddin, Haque A., Bakhsh F. I., Kurukuru V. S. B., Sedighizadeh M. Intelligent energy management scheme-based coordinated control for reducing peak load in grid-connected photovoltaic-powered electric vehicle charging stations. IET Generation. Transmission & Distribution; 2023. https://doi.org/10.1049/gtd2.12772.

91. Rao S. N. V. B., Pavan Kumar Y. V., Amir M., Ahmad F. An adaptive neuro-fuzzy control strategy for improved power quality in multi-microgrid clusters. IEEE Access, 2022; 10:128007–21.

92. Bellur D. M., Kazimierczuk M. K. DC-DC converters for electric vehicle applications. 2007 electrical insulation conference and electrical manufacturing expo. EEIC, 2007. https://doi.org/10.1109/EEIC.2007.4562633.

93. Zhou X., Sheng B., Liu W., Chen Y., Wang L., Liu Y. F. et al. A high-efficiency high-power-density on-board low-voltage DC-DC converter for electric vehicles application. IEEE Trans Power Electron, 2021. https://doi.org/10.1109/TPEL.2021.3076773.

94. Thomas C. E. Fuel cell and battery electric vehicles compared. Int J Hydrogen Energy, 2009. https://doi.org/10.1016/j.ijhydene.2009.06.003.

95. Besenhard J. O. Handbook of battery materials. Handbook of battery materials. https://doi.org/10.1002/9783527611676; 2007.

96. Wilberforce T., El-Hassan Z., Khatib F. N., Al Makky A., Baroutaji A., Carton J. G. et al. Developments of electric cars and fuel cell hydrogen electric cars. Int J Hydrogen Energy, 2017. https://doi.org/10.1016/j.ijhydene.2017.07.054.

97. Cook B. Introduction to fuel cells and hydrogen technology. Eng Sci Educ J, 2002. https://doi.org/10.1049/esej:20020601.

98. Al-Mufachi N. A., Shah N. The role of hydrogen and fuel cell technology in providing security for the UK energy system. Energy Pol, 2022. https://doi.org/10.1016/j.enpol.2022.113286.

99. Tarasenko A. B., Kiseleva S. V., Popel O. S. Hydrogen energy pilot introduction – technology competition. Int J Hydrogen Energy, 2022. https://doi.org/10.1016/j.ijhydene.2022.01.242.

100. Tanç B., Arat H. T., Baltacıoglu E., Ayd in K. Overview of the next quarter century vision of hydrogen fuel cell electric vehicles. Int J Hydrogen Energy, 2019. https://doi.org/10.1016/j.ijhydene.2018.10.112.

101. Itani K., De Bernardinis A., Khatir Z., Jammal A. Comparative analysis of two hybrid energy storage systems used in a two front wheel driven electric vehicle during extreme start-up and regenerative braking operations. Energy Convers Manag, 2017. https://doi.org/10.1016/j.enconman.2017.04.036.

102. Beck A., Knöttner S., Unterluggauer J., Halmschlager D. & Hofmann, R. (2022). An integrated optimization model for industrial energy system retrofit with process scheduling, heat recovery, and energy supply system synthesis. Processes, 10(3), 572.

103. Hannan M. A., Lipu M. S. H., Hussain A., Mohamed A. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations. Renew Sustain Energy Rev, 2017; 78:834–54.

104. Rajashekara K. Present status and future trends in electric vehicle propulsion technologies. IEEE J Emerg Sel Top Power Electron, 2013. https://doi.org/10.1109/JESTPE.2013.2259614.

105. Eqbal M. A. S., Fernando N., Marino M., Wild G. Hybrid propulsion systems for remotely piloted aircraft systems. Aerospace, 2018. https://doi.org/10.3390/AEROSPACE5020034.

106. Waseem M., Sherwani A. F., Suhaib M. Highway gradient effects on hybrid electric vehicle performance. In: Smart cities – opportunities and challenges. Singapore: Springer; 2020. – Р. 583-92.

107. Waseem M., Sherwani A. F., Suhaib M. Designing and modelling of power converter for renewable powered hybrid vehicle. In: 2019 international conference on power electronics, control and automation (ICPECA). IEEE; 2019. – Р. 1-6.

108. Chan CC. The state of the art of electric and hybrid vehicles. Proc IEEE, 2002; 90: 247–75.

109. Waseem M., Sherwani A. F., Suhaib M. Simscape modelling and analysis of photovoltaic modules with boost converter for solar electric vehicles. Lecture Notes in Electrical Engineering, 2019. https://doi.org/10.1007/978-981-13-6772-4_17.

110. Forero Camacho O. M., Mihet-Popa L. Fast charging and smart charging tests for electric vehicles batteries using renewable energy. Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles, 2016. https://doi.org/10.2516/ogst/2014001.

111. Ibrahim H., Ilinca A., Perron J. Energy storage systems-characteristics and comparisons. Renewable and sustainable energy reviews. – 2008.https://doi.org/10.1016/j.rser.2007.01.023.

112. Kendrick E., Slater P. Battery and solid oxide fuel cell materials. Annual Reports on the Progress of Chemistry – section A. – 2012. https://doi.org/10.1039/c2ic90006h.

113. Lashtabeg A., Skinner S. J. Solid oxide fuel cells-a challenge for materials chemists? J Mater Chem, 2006. https://doi.org/10.1039/b603620a.

114. Larminie J., Dicks A. Fuel cell systems explained: second edition. Fuel cell systems explained: second edition. – 2013. https://doi.org/10.1002/9781118878330.

115. Zhang Y., Wang J., Yao Z. Recent development of fuel cell core components and key materials: a review. Energies, 2023. https://doi.org/10.3390/en16052099.

116. Li J., Fang C., Xu L. Current status and trends of the research and development for fuel cell vehicles. Journal of Automotive Safety and Energy, 2014.

117. Veziroglu A., Mac Ario R. Fuel cell vehicles: state of the art with economic and environmental concerns. Int J Hydrogen Energy, 2011. https://doi.org/10.1016/j.ijhydene.2010.08.145.

118. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, Third Edition. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, Third Edition. https://doi.org/10.1201/9780429504884.

119. Annual Hydrogen Evaluation | California Air Resources Board. https://ww2.arb.ca.gov/resources/documents/annual-hydrogen-evaluation. Accessed 16, April, 2023.

120. Fuel cell – What is it and how does it work? – Peak Oil. https://www.peakoil.net/renewable/hydrogen-fuel-cell.

121. Moldrik P., Hradilek Z. Hydrogen production for solar energy storage. Renewable Energy and Power Quality Journal, 2011. https://doi.org/10.24084/repqj09.379.

122. Dogan E. E. Hydrogen production and its storage from solar energy. Adv Mater Sci, 2020. https://doi.org/10.2478/adms-2020-0007.

123. Olabi A. G. State of the art on renewable and sustainable energy. Energy, 2013. https://doi.org/10.1016/j.energy.2013.10.013.

124. Banos R., Manzano-Agugliaro F., Montoya F. G., Gil C., Alcayde A., Gómez J. Optimization methods applied to renewable and sustainable energy: a review. Renewable and Sustainable Energy Reviews; 2011. https://doi.org/10.1016/j.rser.2010.12.008.

125. Iqbal M., Becherif M., Ramadan H. S., Badji A. Dual-layer approach for systematic sizing and online energy management of fuel cell hybrid vehicles. Appl. Energy, 2021. https://doi.org/10.1016/j.apenergy.2021.117345.

126. Fu Z., Zhu L., Tao F., Si P., Sun L. Optimization based energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle considering fuel economy and fuel cell lifespan. Int J Hydrogen Energy, 2020. https://doi.org/10.1016/j.ijhydene.2020.01.017.

127. Luo Y., Wu Y., Li B., Qu J., Feng S. P., Chu P. K. Optimization and cutting-edge design of fuel-cell hybrid electric vehicles. Int J Energy Res, 2021. https://doi.org/10.1002/er.7094.

128. Emadi A., Williamson S. S. Fuel cell vehicles: opportunities and challenges. 2004 IEEE Power Engineering Society General Meeting; 2004. https://doi.org/10.1109/pes.2004.1373150.

129. Rifai N., Sabor J., Alaoui C. Energy management strategy of a fuel-cell electric vehicle based on wavelet transform. Lecture Notes in Networks and Systems. – 2021. https://doi.org/10.1007/978-3-030-53970-2_21.

130. Rudolf T., Schurmann T., Schwab S., Hohmann S. Toward holistic energy management strategies for fuel cell hybrid electric vehicles in heavy-duty applications. Proc IEEE, 2021. https://doi.org/10.1109/JPROC.2021.3055136.

131. Zhao X., Wang L., Zhou Y., Pan B., Wang R., Wang L. et al. Energy management strategies for fuel cell hybrid electric vehicles: classification, comparison, and outlook. Energy Convers Manag, 2022. https://doi.org/10.1016/j.enconman.2022.116179.

132. Azib T., Bethoux O., Remy G., Marchand C., Berthelot E. An innovative control strategy of a single converter for hybrid fuel cell/supercapacitor power source. IEEE Trans Ind Electron, 2010. https://doi.org/10.1109/TIE.2010.2044123.

133. Li Q., Chen W., Li Y., Liu S., Huang J. Energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle based on fuzzy logic. Int J Electr Power Energy Syst, 2012. https://doi.org/10.1016/j.ijepes.2012.06.026.

134. Tazelaar E., Veenhuizen B., Van Den Bosch P., Grimminck M. Analytical solution of the energy management for fuel cell hybrid propulsion systems. IEEE Trans Veh Technol, 2012. https://doi.org/10.1109/TVT.2012.2190630.

135. Veenhuizen P. A., Tazelaar E. Experimental assessment of an energy management strategy on a fuel cell hybrid vehicle. 26th Electric Vehicle Symposium 2012; 2. 2012.

136. Mohammed A. S., Atnaw S. M., Salau A. O., Eneh J. N. Review of optimal sizing and power management strategies for fuel cell/battery/super capacitor hybrid electric vehicles. Energy Rep, 2023. https://doi.org/10.1016/j.egyr.2023.01.042.

137. Odeim F., Roes J., Heinzel A. Power management optimization of an experimental fuel cell/ battery/supercapacitor hybrid system. Energies, 2015. https://doi.org/10.3390/en8076302.

138. Florescu A., Stocklosa O., Teodorescu M.,Radoi C., Stoichescu D. A., Rosu S. The advantages, limitations and disadvantages of Z-source inverter. Proceedings of the International Semiconductor Conference. CAS, 2010. https://doi.org/10.1109/SMICND.2010.5650503.

139. Khan U., Yamamoto T., Sato H. Consumer preferences for hydrogen fuel cell vehicles in Japan. Transp Res D Transp Environ, 2020. DOI: 10.1016/j.trd.2020.102542.

140. Jung J., Lee D. J., Yoshida K. Comparison between Korean and Japanese consumers’ preferences for fuel cell electric vehicles. Transp Res D Transp Environ, 2022. DOI: 10.1016/j.trd.2022.103511.

141. Thomas C. E., James B. D., Lomax F. D. Market penetration scenarios for fuel cell vehicles. Int J Hydrogen Energy, 1998. DOI: 10.1016/s0360-3199(97)00150-x.

142. Wittstock R., Pehlken A., Wark M. Challenges in automotive fuel cells recycling. Recycling, 2016. DOI: 10.3390/recycling1030343.

143. Emonts B., Reuß M., Stenzel P., Welder L., Knicker F., Grube T. et al. Flexible sector coupling with hydrogen: a climate-friendly fuel supply for road transport. Int J Hydrogen Energy, 2019. DOI: 10.1016/j.ijhydene.2019.03.183.

144. Burke A. F. Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles. Proc IEEE, 2007; 95:806–20.

145. Shen J., Dusmez S., Khaligh A. Optimization of sizing and battery cycle life in battery/ultracapacitor hybrid energy storage systems for electric vehicle applications. IEEE Trans Industr Inform, 2014; 10:2112-21.

146. Habib AKMA, Hasan M. K., Mahmud M., Motakabber S. M. A., Ibrahimya M. I., Islam S. A review: energy storage system and balancing circuits for electric vehicle application. IET Power Electron, 2021. DOI: 10.1049/pel2.12013.

147. Di Ilio G., Di Giorgio P., Tribioli L., Bella G., Jannelli E. Preliminary design of a fuel cell/battery hybrid powertrain for a heavy-duty yard truck for port logistics. Energy Convers Manag, 2021. DOI: 10.1016/j.enconman.2021.114423.

148. Mallon K., Assadian F. A study of control methodologies for the trade-off between battery aging and energy consumption on electric vehicles with hybrid energy storage systems. Energies, 2022. DOI: 10.3390/en15020600.

149. Sun K., Li Z. Development of emergency response strategies for typical accidents of hydrogen fuel cell electric vehicles. Int J Hydrogen Energy, 2021. DOI: 10.1016/j.ijhdene.2021.02.130.

150. Zhang Y., Liu J., Cui S., Zhou M. Parameter matching methods for Li battery-supercapacitor hybrid energy storage systems in electric buses. Machines, 2022. DOI: 10.3390/machines10020085.

151. Komsiyska L., Buchberger T., Diehl S., Ehrensberger M., Hanzl C., Hartmann C. et al. Critical review of intelligent battery systems: challenges, implementation, and potential for electric vehicles. Energies, 2021. DOI: 10.3390/en14185989.

152. Molina-Ibanez E. L., Rosales-Asensio E., Perez-Molina C., Perez F. M., Colmenar-Santos A. Analysis on the electric vehicle with a hybrid storage system and the use of Superconducting magnetic energy storage (SMES). Energy Rep, 2021. DOI: 10.1016/j.egyr.2021.07.055.

153. Sahin M. E., Blaabjerg F., Sangwongwanich A. A comprehensive review on supercapacitor applications and developments. Energies, 2022. DOI: 10.3390/en15030674.

154. Vermesan O., John R., Pype P., Kriegel K., Mitic G., Lorentz V. et al. Automotive intelligence embedded in electric connected autonomous and shared vehicles technology for sustainable green mobility. Frontiers in Future Transportation, 2021. DOI: 10.3389/ffutr.2021.688482.

155. Amir M., Zaheeruddin. ANN based approach for the estimation and enhancement of power transfer capability. In: 2019 international conference on power electronics, control and automation (ICPECA). IEEE; 2019. – Р. 1-6.

156. Iqbal A., Amir M., Kumar V., Alam A., Umair M. Integration of next generation IIoT with blockchain for the development of smart industries. Emerging Science Journal, 2020; 4:1–17.

157. Anandavel S., Li W., Garg A., Gao L. Application of digital twins to the product lifecycle management of battery packs of electric vehicles. IET Collaborative Intelligent Manufacturing. – 2021. DOI: 10.1049/cim2.12028.

158. Tariq H., Javed M. A., Alvi A. N., Hasanat M. H. A., Khan M. B., Saudagar A. K. J. et al. AI-enabled energy-efficient fog computing for internet of vehicles. J Sens, 2022. DOI: 10.1155/2022/4173346.

159. Ben Youssef M., Salhi A., Ben Salem F. Intelligent multiple vehicule detection and tracking using deep-learning and machine learning: an overview. 18th IEEE international multi-conference on systems, signals and devices. SSD, 2021. DOI: 10.1109/SSD52085.2021.9429331.

160. Archakam P. K., Muthuswamy S. Modelling and simulation of four-stage collision energy absorption system based on magneto rheological absorber. Int J Mech Mater Des, 2022. DOI: 10.1007/s10999-022-09616-7.

161. Arandhakar S., Jayaram N., Shankar Y. R., Gaurav, Kishore P. S. V., Halder S. Emerging intelligent bidirectional charging strategy based on recurrent neural network accosting EMI and temperature effects for electric vehicle. IEEE Access; 2022. DOI: 10.1109/AC-CESS.2022.3223443.

162. Walker S. B., Fowler M., Ahmadi L. Comparative life cycle assessment of power-to-gas generation ofhydrogen with a dynamic emissions factor for fuel cell vehicles. J Energy Storage, 2015; 4:62-73.

163. Rani S., Ahmed S. H. & Rastogi R. (2020). Dynamic clustering approach based on wireless sensor networks genetic algorithm for IoT applications. Wireless Networks, 26(4), 2307-2316.

164. Boro R. C., Kaushal J., Nangia Y., Wangoo N., Bhasin A. & Suri C. R. (2011). Gold nanoparticles catalyzed chemiluminescence immunoassay for detection of herbicide 2, 4-dichlorophenoxyacetic acid. Analyst, 136(10), 2125-2130.

165. Kumar A., Behl T. & Chadha S. (2020). Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects. International journal of biological macromolecules, 149, 1262-1274.

166. Rehni A. K., Singh T. G., Singh N. & Arora S. (2010). Tramadol-induced seizurogenic effect: a possible role of opioid-dependent histamine (H 1) receptor activation-linked mechanism. Naunyn-Schmiedeberg’s archives of pharmacology, 381, 11-19.

167. Chowdhury M. S. A., Al Mamun K. A. & Rahman A. M. (2016, September). Modelling and simulation of power system of battery, solar and fuel cell powered Hybrid Electric vehicle. In 2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT) (pp. 1-6). IEEE.

168. Taoufik M. & Lassad S. (2017, March). Hybrid photovoltaic-fuel cell system with storage device control. In 2017 International Conference on Green Energy Conversion Systems (GECS) (pp. 1-6). IEEE.

169. Wang J. & Xiao D. (2018, November). Development and evaluation of a portable fuel cell hybrid system. In 2018 Chinese Automation Congress (CAC) (pp. 146-150). IEEE.

170. Feroldi D., Serra M., Riera J., 2009. Design and analysis of fuel-cell hybrid systems oriented to automotive applications. IEEE Trans. Veh. Technol. 58 (9), 4720-4729.

171. Wang B. et al., 2017. A stand-alone hybrid pv/fuel cell power system using single-inductor dualinput single-output boost converter with model predictive control. In: 2017 Asian Conference on Energy, Power and Transportation Electrification. ACEPT, IEEE.

172. Duman A. C., Güler Ö., 2018. Techno-economic analysis of off-grid PV/wind/fuel cell hybrid system combinations with a comparison of regularly and seasonally occupied households. Sustainable Cities Soc. 42, 107-126.

173. Kadri A. et al., 2020. Energy management and control strategy for a DFIG wind turbine/fuel cell hybrid system with super capacitor storage system. Energy, 192, 116518.

174. Wang Y., Sun Z., Chen Z., 2019. Energy management strategy for battery/ supercapacitor/fuel cell hybrid source vehicles based on finite state machine. Appl. Energy, 254, 113707.

175. Wang T. et al., 2020. An optimized energy management strategy for fuel cell hybrid power system based on maximum efficiency range identification. J. Power Sources, 445, 227333.

176. Khan M. J., Mathew L., 2019. Fuzzy logic controller-based MPPT for hybrid photo-voltaic/wind/ fuel cell power system. Neural Comput. Appl. 31 (10), 6331-6344.

177. Ghenai C., Salameh T., Merabet A., 2020. Technico-economic analysis of off grid solar PV/Fuel cell energy system for residential community in desert region. Int. J. Hydrogen Energy, 45 (20), 11460-11470.

178. Ma Y. et al., 2021. A novel nonisolated multiport bidirectional DC-DC converter with high voltage gain for fuel cell hybrid system. In: 2021 IEEE Transportation Electrification Conference & Expo. ITEC, IEEE.

179. Bizon N., 2019. Real-time optimization strategies of fuel cell hybrid power systems based on load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained. Appl. Energy, 241, 444-460.

180. Chan C., 2007. The state of the art of electric, hybrid, and fuel cell vehicles. Proc. IEEE, 95 (4), 704-718.


Рецензия

Для цитирования:


Сингх М., Сингла М., Сафаралиев М.Х., Сингх К., Одинаев И., Менаем А. Достижения и проблемы интеграции топливных элементов в электротранспорт: комплексный анализ. Альтернативная энергетика и экология (ISJAEE). 2024;(7):250-271. https://doi.org/10.15518/isjaee.2024.07.250-271

For citation:


Singh M., Singla M., Safaraliev M.Kh., Singh K., Odinaev I., Menaem A. Advancements and challenges of fuel cell integration in electric vehicles: a comprehensive analysis. Alternative Energy and Ecology (ISJAEE). 2024;(7):250-271. https://doi.org/10.15518/isjaee.2024.07.250-271

Просмотров: 278


ISSN 1608-8298 (Print)