Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Effect of indirect electrochemical pretreatment on the anaerobic digestion of swine manure

https://doi.org/10.15518/isjaee.2024.08.125-149

Abstract

The increase in pig population has led to an accumulation of swine manure (SM) in the environment. Improper disposal of this waste can lead to environmental pollution. Anaerobic digestion (AD) is a promising method for utilizing SM, but its industrial application is still limited due to high lignocellulose content and a suboptimal carbon-to-nitrogen ratio. In this study, indirect electrochemical pretreatment (IEP) was used to improve AD of SM. IEP involves treating SM with reactive oxygen species generated by tap water electrolysis. Three different pretreatment modes (acidic-alkaline, acidic, and alkaline-acidic-alkaline) were tested, differing in the time of water flow through the electrochemical unit of the IEP device. Using scanning electron microscopy and UV-V is spectroscopy, it was found that as a result of IEP, the particle size of the SM decreased from 200-500 to 15-50 μm. This led to an increase in biodegradability by 37-38%, compared to untreated SM. Using the alkaline-acid-alkaline pretreatment mode, the highest methane yield of 94,48 ± 1,42 mL CH4/g VS was obtained, which was 41,28 ± 2,21% higher than in the control group. During AD of pretreated SW, more complex microbial aggregates were observed in the anaerobic microbial community, and the relative abundance of hydrolytic (Bacillus, Ureibacillus, and Geobacillus genera) and syntrophic (Smithella genus and Christensenellaceae R-7 group) microorganisms increased.

About the Authors

A. A. Ivanenko
Lomonosov Moscow State University; Federal Research Center «Fundamentals of Biotechnology» of the Russian Academy of Sciences
Russian Federation

Artem A. Ivanenko - Master of Science in the Department of Microbiology, Lomonosov Moscow State University; engineer in the laboratory of microbiology of anthropogenic habitats, Federal Research Center of Biotechnology of the Russian Academy of Sciences.

119899, Moscow, Leninskie Gory, 1, 12; 119071, Moscow, Leninsky Prospekt, 33, Building 2

Researcher ID JAX-4154-2023



A. A. Laikova
Federal Research Center «Fundamentals of Biotechnology» of the Russian Academy of Sciences
Russian Federation

Alexandra A. Laikova - junior researcher in Laboratory of Microbiology of Anthropogenic Habitats, Research Center of Biotechnology, Russian Academy of Sciences.

119071, Moscow, Leninsky Prospekt, 33, Building 2

Researcher ID IVU-7977-2023, Scopus Author ID 58044317600



E. A. Zhuravleva
Federal Research Center «Fundamentals of Biotechnology» of the Russian Academy of Sciences
Russian Federation

Elena A. Zhuravleva - junior researcher Laboratory of Microbiology of Anthropogenic Habitats, postgraduate, PhD student, Research Center of Biotechnology, Russian Academy of Sciences.

119071, Moscow, Leninsky Prospekt, 33, Building 2

Researcher ID JBS-4297-2023, Scopus Author ID 57216346570



S. V. Shekhurdina
Federal Research Center «Fundamentals of Biotechnology» of the Russian Academy of Sciences
Russian Federation

Svetlana V. Shekhurdina - junior researcher of Laboratory of Microbiology of Anthropogenic Habitats, Research Center of Biotechnology, Russian Academy of Sciences.

119071, Moscow, Leninsky Prospekt, 33, Building 2

Researcher ID JZW-4863-2024, Scopus Author ID 57564192200



N. G. Loiko
Federal Research Center «Fundamentals of Biotechnology» of the Russian Academy of Sciences
Russian Federation

Nataliya G. Loiko - Researcher Laboratory of survival of microorganism Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences.

119071, Moscow, Leninsky Prospekt, 33, Building 2

Scopus Author ID 7006188688



I. B. Kotova
Lomonosov Moscow State University
Russian Federation

Irina B. Kotova - Professor, Doctor of Biological Sciences, Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University.

119899, Moscow, Leninskie Gory, 1, 12

Researcher ID (IRID) 498191, AuthorID 94744, Scopus Author ID 7003715656



A. A. Kovalev
https://www.researchgate.net/profile/Andrey-Kovalev-8
Federal Government Budgetary Institution of Science «Federal Scientific Agroengeneering Сenter VIM»
Russian Federation

Andrey A. Kovalev - senior researcher of the laboratory of bioenergy and supercritical technologies, candidate of technical sciences, Federal Scientific Agroengineering Center VIM.

109428, Moscow, 1st Institutskiy Proezd, Building 5

Researcher ID F-7045-2017, Scopus Author ID 57205285134



D. A. Kovalev
Federal Government Budgetary Institution of Science «Federal Scientific Agroengeneering Сenter VIM»
Russian Federation

Dmitry A. Kovalev – head of the laboratory of bioenergy and supercritical technologies, candidate of technical Sciences, Federal Scientific Agroengineering Center VIM.

109428, Moscow, 1st Institutskiy Proezd, Building 5

Researcher ID K-4810-2015



V. A. Panchenko
Russian University of Transport
Russian Federation

Vladimir A. Panchenko - Candidate of Technical Sciences, Associate Professor of the Department of the Russian University of Transport, Senior Researcher of the Laboratory of the Federal Scientific Agroengineering Center VIM.

127994, Moscow, st. Obraztsova, 9, building 9

Researcher ID P-8127-2017, Scopus Author ID 57201922860, Web of Science Researcher ID AAE1758-2019



S. E. Mamadov
LLC «Qualitek»
Russian Federation

Samir E. Mamadov - CEO, LLC Kvalitek.

420108, Republic of Tatarstan, Kazan, Portovaya str., 37b



Yu. V. Litti
Federal Research Center «Fundamentals of Biotechnology» of the Russian Academy of Sciences
Russian Federation

Yuriy V. Litti – Candidate of Biological Sciences, Research Center of Biotechnology, Russian Academy of Sciences, Head of Laboratory of Microbiology of Anthropogenic Habitats.

119071, Moscow, Leninsky Prospekt, 33, Building 2

Researcher ID C-4945-2014, Scopus Author ID 55251689800



References

1. Food and Agriculture Organization of the United Nations (2023) – with major processing by Our World in Data. «Number of pigs – FAO» [dataset]. Food and Agriculture Organization of the United Nations, «Production: Crops and livestock products» [original data]. https://ourworldindata.org/grapher/pig-livestock-count-heads

2. Xiao Y., Yang H., Yang H., Wang H., Zheng D., Liu Y. et al. Improved biogas production of dry anaerobic digestion of swine manure. Bioresour Technol., 2019;294:122188. https://doi.org/10.1016/j.biortech.2019.122188.

3. Cândido D., Bolsan A. C., Hollas C. E., Venturin B., Tápparo D. C., Bonassa G. et al. Integration of swine manure anaerobic digestion and digestate nutrients removal/recovery under a circular economy concept. J Environ. Manage., 2022;301:113825. https://doi.org/10.1016/j.jenvman.2021.113825.

4. Zheng X., Liu Y., Huang J., Du Z., Zhouyang S., Wang Y. et al. The influence of variables on the bioavailability of heavy metals during the anaerobic digestion of swine manure. Ecotoxicol. Environ. Saf., 2020;195:110457. https://doi.org/10.1016/j.ecoenv.2020.110457.

5. Jurado E., Antonopoulou G., Lyberatos G., Gavala H. N., Skiadas I. V. Continuous anaerobic digestion of swine manure: ADM1-based modelling and effect of addition of swine manure fibers pretreated with aqueous ammonia soaking. Appl Energy, 2016;172:190–8. https://doi.org/10.1016/j.apenergy.2016.03.072.

6. Orlando M. Q., Borja V. M. Pretreatment of Animal Manure Biomass to Improve Biogas Production: A Review. Energies, 2020, vol. 13, page 3573 2020;13:3573. https://doi.org/10.3390/en13143573.

7. Menzel T., Neubauer P., Junne S. Role of Microbial Hydrolysis in Anaerobic Digestion. Energies, 2020, vol. 13, page 5555, 2020;13:5555. https://doi.org/10.3390/en13215555.

8. González-García I., Riaño B., Molinuevo-Salces B., Vanotti M. B., García-González M. C. Improved anaerobic digestion of swine manure by simultaneous ammonia recovery using gas-permeable membranes. Water Res., 2021;190:116789. https://doi.org/10.1016/j.watres.2020.116789.

9. Gahlot P., Balasundaram G., Tyagi V. K., Atabani A. E., Suthar S., Kazmi A. A. et al. Principles and potential of thermal hydrolysis of sewage sludge to enhance anaerobic digestion. Environ. Res., 2022;214:113856. https://doi.org/10.1016/j.envres.2022.113856.

10. Cai Y., Zheng Z., Schäfer F., Stinner W., Yuan X., Wang H. et al. A review about pretreatment of lignocellulosic biomass in anaerobic digestion: Achievement and challenge in Germany and China. J. Clean Prod., 2021;299:126885. https://doi.org/10.1016/j.jclepro.2021.126885.

11. Khanh Nguyen V., Kumar Chaudhary D., Hari Dahal R., Hoang Trinh N., Kim J., Chang S. W. et al. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel, 2021;285:119105. https://doi.org/10.1016/j.fuel.2020.119105.

12. Poddar B. J., Nakhate S. P., Gupta R. K., Chavan A. R., Singh A. K., Khardenavis A. A. et al. A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion. Int. J. Environ. Sci Technol., 2021, 194, 2021;19:3429–56. https://doi.org/10.1007/s13762-021-03248-8.

13. Brémond U., de Buyer R., Steyer J. P., Bernet N., Carrere H. Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale. Renew. Sustain. Energy Rev., 2018;90: 583–604. https://doi.org/10.1016/j.rser.2018.03.103.

14. Kumari D., Singh R. Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renew. Sustain. Energy Rev., 2018;90:877–91. https://doi.org/10.1016/j.rser.2018.03.111.

15. Yuan H., Yu B., Cheng P., Zhu N., Yin C., Ying L. Pilot-scale study of enhanced anaerobic digestion of waste activated sludge by electrochemical and sodium hypochlorite combination pretreatment. Int. Biodeterior Biodegradation, 2016;110:227–34. https://doi.org/10.1016/j.ibiod.2016.04.001.

16. Zeng Q., Huang H., Tan Y., Chen G., Hao T. Emerging electrochemistry-based process for sludge treatment and resources recovery: A review. Water Res., 2022;209:117939. https://doi.org/10.1016/j.watres.2021.117939.

17. Xu Y., Lu Y., Zheng L., Wang Z., Dai X. Perspective on enhancing the anaerobic digestion of waste activated sludge. J. Hazard Mater., 2020;389:121847. https://doi.org/10.1016/j.jhazmat.2019.121847.

18. Cheng K. Y., Kaksonen A. H. Integrating Microbial Electrochemical Technologies With Anaerobic Digestion for Waste Treatment: Possibilities and Perspectives. Curr Dev Biotechnol. Bioeng Solid Waste Manag., 2017:191–221. https://doi.org/10.1016/b978-0-444-63664-5.00009-5.

19. Panigrahi S., Dubey B. K. Electrochemical pretreatment of yard waste to improve biogas production: Understanding the mechanism of delignification, and energy balance. Bioresour Technol., 2019;292:121958. https://doi.org/10.1016/j.biortech.2019.121958.

20. Zeng Q., Zan F., Hao T., Khanal S. K., Chen G. Sewage sludge digestion beyond biogas: Electrochemical pretreatment for biochemicals. Water Res., 2022;208:117839. https://doi.org/10.1016/j.watres.2021.117839.

21. Xi S., Dong X., Lin Q., Li X., Ma J., Zan F. et al. Enhancing anaerobic fermentation of waste activated sludge by investigating multiple electrochemical pretreatment conditions: Performance, modeling and microbial dynamics. Bioresour Technol., 2023;368:128364. https://doi.org/10.1016/j.biortech.2022.128364.

22. Huang H., Deng Y. fan, Zeng Q., Heynderickx P. M., Chen G., Wu D. Integrating electrochemical pretreatment (EPT) and side-stream sulfidogenesis with conventional activated sludge process: Performance, microbial community and sludge reduction mechanisms. Chem. Eng. J., 2022;433:133678. https://doi.org/10.1016/j.cej.2021.133678.

23. Arenas C. B., González R., González J., Cara J., Papaharalabos G., Gómez X. et al. Assessment of electrooxidation as pre- and post-treatments for improving anaerobic digestion and stabilisation of waste activated sludge. J. Environ. Manage., 2021;288:112365. https://doi.org/10.1016/j.jenvman.2021.112365.

24. KovalevA.A., Kovalev D.A., Zhuravleva E.A., Katraeva I. V., Panchenko V., Fiore U. et al. Two-stage anaerobic digestion with direct electric stimulation of methanogenesis: The effect of a physical barrier to retain biomass on the surface of a carbon cloth-based biocathode. Renew Energy, 2022;181:966–77. https://doi.org/10.1016/j.renene.2021.09.097.

25. ООО «КВАЛИТЭК». Электрохимические технологии. Коммерческое предложение. Электрохимические установки «Изумруд». http://xn--l1aeahc.xn--p1ai/wp-content/uploads/2019/12/%D0%9A%D0%9F_%D0%98%D0%97%D0%A3%D0%9C%D0%A0%D0%A3%D0%94.pdf

26. Tang Y., Li X., Dong B., Huang J. Wei Y., Dai X. et al. Effect of aromatic repolymerization of humic acid-like fraction on digestate phytotoxicity reduction during high-solid anaerobic digestion for stabilization treatment of sewage sludge. Water Res., 2018;143: 436–44. https://doi.org/10.1016/j.watres.2018.07.003.

27. Emebu S., Pecha J., Janáčová D. Review on anaerobic digestion models: Model classification & elaboration of process phenomena. Renew Sustain Energy Rev., 2022;160:112288. https://doi.org/10.1016/j.rser.2022.112288.

28. Fadrosh D. W., Ma B., Gajer P., Sengamalay N., Ott S., Brotman R. M. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome., 2014; 2:1–7. https://doi.org/10.1186/2049-2618-2-6/figures/3.

29. Gohl D., Gohl D. M., MacLean A., Hauge A., Becker A., Walek D. et al. An optimized protocol for high-throughput amplicon-based microbiome profiling. Protoc. Exch., 2016. https://doi.org/10.1038/protex.2016.030.

30. KovalevA.A., Kovalev D.A., Zhuravleva E.A., Laikova A. A., Shekhurdina S. V., Vivekanand V. et al. Biochemical hydrogen potential assay for predicting the patterns of the kinetics of semi-continuous dark fermentation. Bioresour Technol., 2023;376:128919. https://doi.org/10.1016/j.biortech.2023.128919.

31. Biyada S., Merzouki M., Elkarrach K., Benlemlih M. Spectroscopic characterization of organic matter transformation during composting of textile solid waste using UV–Visible spectroscopy, Infrared spectroscopy and X-ray diffraction (XRD). Microchem J., 2020;159:105314. https://doi.org/10.1016/j.microc.2020.105314.

32. Huang F., Liu H., Wen J., Zhao C., Dong L., Liu H. Underestimated humic acids release and influence on anaerobic digestion during sludge thermal hydrolysis. Water Res., 2021;201:117310. https://doi.org/10.1016/j.watres.2021.117310.

33. Tang Y., Sun J., Dong B., Dai X. Citric acid treatment directly on anaerobic digestor sludge alleviates the inhibitory effect of in-situ generated humic acids by their deconstruction and redistribution. Water Res., 2023;233:119680. https://doi.org/10.1016/j.watres.2023.119680.

34. Long S.,Yang J., Hao Z., Shi Z., Liu X., Xu Q. et al. Multiple roles of humic substances in anaerobic digestion systems: A review. J. Clean Prod., 2023;418:138066. https://doi.org/10.1016/j.jclepro.2023.138066.

35. Yang H., Xu L., Li Y., Liu H., Wu X., Zhou P. et al. FexO/FeNC modified activated carbon packing media for biological slow filtration to enhance the removal of dissolved organic matter in reused water. J. Hazard Mater., 2023;457:131736. https: //doi.org/10.1016/j.jhazmat.2023.131736.

36. Zheng W., Lü F., Phoungthong K., He P. Relationship between anaerobic digestion of biodegradable solid waste and spectral characteristics of the derived liquid digestate. Bioresour Technol., 2014;161:69–77. https://doi.org/10.1016/j.biortech.2014.03.016.

37. Mirko C., Pezzolla D., Chiara T., Giovanni G. Pretreatments for enhanced biomethane production from buckwheat hull: Effects on organic matter degradation and process sustainability. J. Environ Manage., 2021;285:112098. https://doi.org/10.1016/j.jenvman.2021.112098.

38. Alzagameem A., Khaldi-Hansen B. El., Büchner D., Larkins M., Kamm B., Witzleben S. et al. Lignocellulosic Biomass as Source for Lignin-Based Environmentally Benign Antioxidants. Mol., 2018, vol 23, рage 2664 2018;23:2664. https://doi.org/10.3390/molecules23102664.

39. Sun C., Xia A., Liao Q., Guo X., Fu Q., Huang Y. et al. Inhibitory effects of furfural and vanillin on two-stage gaseous biofuel fermentation. Fuel, 2019;252:350–9. https://doi.org/10.1016/j.fuel.2019.04.068.

40. Prajapati K. K., Pareek N., Vivekanand V. Pre-treatment and multi-feedanaerobic co-digestion of agro-industrial residual biomass for improved biomethanation and kinetic analysis. Front Energy Res., 2018;6:411598. https://doi.org/10.3389/fenrg.2018.00111/bibtex.

41. Moreira A. J. G., de Sousa T. A. T., Franco D., Lopes W. S., de Castilhos Junior A. B. Kinetic modeling and interrelationship aspects of biogas production from waste activated sludge solubilized by enzymatic and thermal pre-treatment. Fuel, 2023;347:128452. https://doi.org/10.1016/j.fuel.2023.128452.

42. Du B., Wang Z., Lens P. N. L., Zhan X., Wu G. New insights into syntrophic ethanol oxidation: Effects of operational modes and solids retention times. Environ Res., 2024;241:117607. https://doi.org/10.1016/j.envres.2023.117607.

43. Yellezuome D., Zhu X., Wang Z., Liu R. Mitigation of ammonia inhibition in anaerobic digestion of nitrogen-rich substrates for biogas production by ammonia stripping: A review. Renew Sustain Energy Rev., 2022;157:112043. https://doi.org/10.1016/j.rser.2021.112043.

44. Wang N., Xiao M., Zhang S., Chen X., Shi J., Fu S. et al. Evaluating the potential of different bioaugmented strains to enhance methane production during thermophilic anaerobic digestion of food waste. Environ Res., 2024;245:118031. https://doi.org/10.1016/j.envres.2023.118031.

45. Liczbiński P., Borowski S. Effect of hyperthermophilic pretreatment on methane and hydrogen production from garden waste under mesophilic and thermophilic conditions. Bioresour Technol., 2021;335:125264. https://doi.org/10.1016/j.biortech.2021.125264.

46. Shekhurdina S., Zhuravleva E., Kovalev A., Andreev E., Kryukov E., Loiko N. et al. Comparative effect of conductive and dielectric materials on methanogenesis from highly concentrated volatile fatty acids. Bioresour Technol., 2023;377:128966. https://doi.org/10.1016/j.biortech.2023.128966.

47. Peces M., Astals S., Jensen P. D., Clarke W. P. Transition of microbial communities and degradation pathways in anaerobic digestion at decreasing retention time. N. Biotechnol., 2021;60:52–61. https://doi.org/10.1016/j.nbt.2020.07.005.

48. Buenaño-Vargas C., Gagliano M. C., Paulo L. M., Bartle A., Graham A., van Veelen H. P. J. et al. Acclimation of microbial communities to low and moderate salinities in anaerobic digestion. Sci Total Environ., 2024;906:167470. https://doi.org/10.1016/j.scitotenv.2023.167470.

49. Chen R., Li Z., Feng J., Zhao L., Yu J. Effects of digestate recirculation ratios on biogas production and methane yield of continuous dry anaerobic digestion. Bioresour Technol., 2020;316:123963. https://doi.org/10.1016/j.biortech.2020.123963.

50. Lee J., Koo T., Yulisa A., Hwang S. Magnetite as an enhancer in methanogenic degradation of volatile fatty acids under ammonia-stressed condition. J. Environ Manage., 2019;241:418–26. https://doi.org/10.1016/j.jenvman.2019.04.038.

51. Yu N., Guo B., Liu Y. Shaping biofilm microbiomes by changing GAC location during wastewater anaerobic digestion. Sci Total Environ, 2021;780:146488. https://doi.org/10.1016/j.scitotenv.2021.146488.

52. Niu C., Pan Y., Lu X., Wang S., Zhang Z., Zheng C. et al. Mesophilic anaerobic digestion of thermally hydrolyzed sludge in anaerobic membrane bioreactor: Long-term performance, microbial community dynamics and membrane fouling mitigation. J. Memb. Sci, 2020;612:118264. https://doi.org/10.1016/j.memsci.2020.118264.

53. Lee B., Park J. G., Shin W. B., Tian D. J., Jun H. B. Microbial communities change in an anaerobic digestion after application of microbial electrolysis cells. Bioresour Technol., 2017;234:273–80. https://doi.org/10.1016/j.biortech.2017.02.022.

54. Zhang L., Loh K. C., Sarvanantharajah S., Tong Y. W, Wang C. H., Dai Y. Mesophilic and thermophilic anaerobic digestion of soybean curd residue for methane production: Characterizing bacterial and methanogen communities and their correlations with organic loading rate and operating temperature. Bioresour Technol., 2019;288:121597. https://doi.org/10.1016/j.biortech.2019.121597.

55. Lü F., Luo C., Shao L., He P. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina. Water Res., 2016;90:34–43. https://doi.org/10.1016/j.watres.2015.12.029.

56. Saha S., Basak B., Hwang J. H., Salama E. S., Chatterjee P. K., Jeon B. H. Microbial Symbiosis: A Network towards Biomethanation. Trends Microbiol, 2020;28:968–84. https://doi.org/10.1016/j.tim.2020.03.012.

57. Wang J., Ma D., Feng K., Lou Y., Zhou H., Liu B. et al. Polystyrene nanoplastics shape microbiome and functional metabolism in anaerobic digestion. Water Res., 2022;219:118606. https://doi.org/10.1016/j.watres.2022.118606.

58. Linsong H., Lianhua L., Ying L., Changrui W., Yongming S. Bioaugmentation with methanogenic culture to improve methane production from chicken manure in batch anaerobic digestion. Chemosphere, 2022;303:135127. https://doi.org/10.1016/j.chemo-sphere.2022.135127.

59. Bueno de Mesquita C. P., Wu D., Tringe S. G. Methyl-Based Methanogenesis: an Ecological and Genomic Review. Microbiol Mol Biol Rev., 2023;87. https://doi.org/10.1128/mmbr.00024-22.

60. Yang S., Wen Q., Chen Z. Impacts of Cu and Zn on the performance, microbial community dynamics and resistance genes variations during mesophilic and thermophilic anaerobic digestion of swine manure. Bioresour Technol., 2020;312:123554. https://doi.org/10.1016/j.biortech.2020.123554.

61. Hu Y., Shen Y., Wang J. Pretreatment of antibiotic fermentation residues by combined ultrasound and alkali for enhancing biohydrogen production. J Clean Prod., 2020;268:122190. https://doi.org/10.1016/j.jclepro.2020.122190.

62. Guan R., Gu J., Wachemo A. C., Yuan H., Li X. Novel Insights into Anaerobic Digestion of Rice Straw Using Combined Pretreatment with CaO and the Liquid Fraction of Digestate: Anaerobic Digestion Performance and Kinetic Analysis. Energy and Fuels, 2020;34:1119–30. https://doi.org/10.1021/acs.energyfuels.9b02104.

63. Martínez-Rodríguez A., Abánades A. Comparative Analysis of Energy and Exergy Performance of Hydrogen Production Methods. Entropy, 2020; 22: 1286. https://doi.org/10.3390/e22111286.


Review

For citations:


Ivanenko A.A., Laikova A.A., Zhuravleva E.A., Shekhurdina S.V., Loiko N.G., Kotova I.B., Kovalev A.A., Kovalev D.A., Panchenko V.A., Mamadov S.E., Litti Yu.V. Effect of indirect electrochemical pretreatment on the anaerobic digestion of swine manure. Alternative Energy and Ecology (ISJAEE). 2024;(8):125-149. (In Russ.) https://doi.org/10.15518/isjaee.2024.08.125-149

Views: 288


ISSN 1608-8298 (Print)