

Разработка и исследование алгоритма управления для снижения расхода водорода энергоустановкой с двумя водородными топливными элементами
https://doi.org/10.15518/isjaee.2024.08.093-110
Аннотация
В статье рассматриваются алгоритмы распределения мощности для энергоустановок с топливными элементами (ТЭ), позволяющие минимизировать расход водорода. Система управления энергоустановкой должна распределять нагрузки между ТЭ так, чтобы обеспечить эффективную работу системы. Однако в процессе работы ТЭ их характеристики могут существенно измениться, что приведет к изменению оптимального распределения мощности между ТЭ. Наиболее распространённые алгоритмы управления энергоустановок с ТЭ – равномерного и последовательного распределения мощности, не способны эффективно отреагировать на данные изменения. Авторами предложен алгоритм распределения мощности в реальном времени для энергоустановки с двумя топливными элементами с полимерной протонообменной мембраной (ПОМТЭ) для снижения расхода водорода. Исходными данными для системы управления являются текущие характеристики ТЭ – вольтамперная характеристика и расход водорода. На компьютерной модели выполнено сравнение эффективности предложенного алгоритма и классических алгоритмов управления для трех конфигураций энергоустановки с двумя ТЭ мощностью 1 кВт. На примере тестового графика нагрузки экономия водорода для предложенного алгоритма составила 7,24% по сравнению с алгоритмом равномерного распределения и 11,42% по сравнению с алгоритмом последовательного распределения мощности.
Ключевые слова
Об авторах
И. А. ЛипужинРоссия
Липужин Иван Алексеевич - кандидат технических наук, доцент, старший научный сотрудник научно-исследовательской лаборатории «Автономные гибридные электроэнергетические комплексы», доцент кафедры «Электроэнергетика, электроснабжение и силовая электроника».
603155, Нижний Новгород, ул. Минина, 24
А. В. Шалухо
Россия
Шалухо Андрей Владимирович - кандидат технических наук, доцент кафедры «Электроэнергетика, электроснабжение и силовая электроника», заведующий Молодежной научно-исследовательской лабораторией по разработке перспективных систем накопления энергии.
603155, Нижний Новгород, ул. Минина, 24
Р. Ш. Бедретдинов
Россия
Бедретдинов Рустам Шамилевич - кандидат технических наук, доцент, старший научный сотрудник научно-исследовательской лаборатории «Автономные гибридные электроэнергетические комплексы», доцент кафедры «Электроэнергетика, электроснабжение и силовая электроника».
603155, Нижний Новгород, ул. Минина, 24
Ю. Н. Шувалова
Россия
Шувалова Юлия Николаевна - младший научный сотрудник научно-исследовательской лаборатории «Автономные гибридные электроэнергетические комплексы».
603155, Нижний Новгород, ул. Минина, 24
Список литературы
1. Радченко Р. В. Водород в энергетике / А. С. Мокрушин, В. В. Тюльпа. – Екатеринбург: Изд-во Урал. ун-та, 2014. – 229 с.
2. Boretti A. Better integrating battery and fuel cells in electric vehicles. Energy Storage. 2024, 6(4), e669, doi: 10.1002/est2.669.
3. Mariscal G., Depcik C., Chao H., Wu G., Li X. Technical and economic feasibility of applying fuel cells as the power source of unmanned aerial vehicles. Energy Conversion and Management. 2024, 301, 118005, doi: 10.1016/j.enconman.2023.118005.
4. Alaswad A., Omran A., Sodre J. R., Wilberforce T., Pignatelli G., Dassisti M., Baroutaji A., Olabi A.G. Technical and commercial challenges of proton-exchange membrane (PEM) fuel cells. Energies. – 2021, 14, 144, doi: 10.3390/en14010144.
5. Alabi A.S., Popoola A.P.I., Popoola O.M., Mathe N.R., Abdulwahab M. Materials for electrocatalysts in proton exchange membrane fuel cell: A brief review. Front. Energy Res, 2023, 11, 1091105, doi: 10.3389/fenrg.2023.1091105.
6. Wang Y., Diaz D. F. R., Chen K. S., Wang Z., Adroher X. C. Materials, technological status, and fundamentals of PEM fuel cells – A review, Materials Today, 2020, 32, pp. 178-203, doi: 10.1016/j.mattod.2019.06.005.
7. Tawalbeh M., Alarab S., Al-Othman A., Javed R.M.N. The operating parameters, structural composition, and fuel sustainability aspects of PEM fuel cells: A mini review. Fuels, 2022, 3, pp. 449-474, doi: 10.3390/fuels3030028.
8. Alrewq M., Albarbar A. Investigation into the characteristics of proton exchange membrane fuel cell-based power system. IET Sci. Meas. Technol., 2016, 10, pp. 200-206, doi: 10.1049/iet-smt.2015.0046.
9. Madhav D., Wang J., Keloth R., Mus J., Buysschaert F., Vandeginste V. A review of proton exchange membrane degradation pathways, mechanisms, and mitigation strategies in a fuel cell. Energies, 2024, 17, 998, doi: 10.3390/en17050998.
10. Wallnöfer-Ogris E., Poimer F., Köll R., Macherhammer M. G., Trattner A. Main degradation mechanisms of polymer electrolyte membrane fuel cell stacks – Mechanisms, influencing factors, consequences, and mitigation strategies. International Journal of Hydrogen Energy, 2024, 50(B), pp. 1159-1182, doi: 10.1016/j.ijhydene.2023.06.215.
11. Loskutov A., Kurkin A., Shalukho A., Lipuzhin I., Bedretdinov R. Investigation of PEM Fuel Cell Characteristics in Steady and Dynamic Operation Modes. Energies, 2022, 15, 6863, Doi:10.3390/en15196863.
12. Khalatbarisoltani A., Zhou H., Tang X., Kandidayeni M., Boulon L., Hu X. Energy management strategies for fuel cell vehicles: A comprehensive review of the latest progress in modeling, strategies, and future prospects. IEEE Transactions on Intelligent Transportation Systems, 2024, 25, 1, pp. 14-32, doi: 10.1109/TITS.2023.3309052.
13. Qiu Y. et al. Progress and challenges in multistack fuel cell system for high power applications: architecture and energy management. Green Energy and Intelligent Transportation, 2023, 2, 2, 100068, doi: 10.1016/j.geits.2023.100068.
14. Ma R. et al. Recent progress and challenges of multistack fuel cell systems: Fault detection and reconfiguration, energy management strategies, and applications. Energy Conversion and Management, 2023, 285, 117015, doi: 10.1016/j.enconman.2023.117015.
15. Garcia J. E., Herrera D. F., Boulon L., Sicard P., Hernandez A. Power sharing for efficiency optimisation into a multi fuel cell system, in proc. 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, Turkey, 2014, pp. 218-223, doi: 10.1109/ISIE.2014.6864614.
16. Wang T., Li Q., Yin L., Chen W. Hydrogen consumption minimization method based on the online identification for multistack PEMFCs system. International Journal of Hydrogen Energy, 2019, 44, 11, pp. 5074-5081, doi: 10.1016/j.ijhydene.2018.09.181.
17. Macias A., Kandidayeni M., Boulon L., Chaoui H. A novel online energy management strategy for multi fuel cell systems, in proc. 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon, France, 2018, pp. 2043-2048, doi: 10.1109/ICIT.2018.8352503.
18. Jian B., Wang H. Hardware-in-the-loop real-time validation of fuel cell electric vehicle power system based on multistack fuel cell construction. Journal of Cleaner Production, 2022, 331, 129807, doi: 10.1016/j.jclepro.2021.129807.
19. Li W., Li N., Liu J., Luo J. Fuzzy control strategy for load power distribution of multi stack fuel cell system based on cuckoo algorithm, in proc. 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2), Chengdu, China, 2022, pp. 642-646, doi: 10.1109/EI256261.2022.10117351.
20. Li Q., Chen W. Design of energy management system of a PEMFC–Battery– supercapacitor hybrid tramway, in Urban Transport Systems. InTech, 2017. doi: 10.5772/64696.
21. Liang Y., Liang Q., Zhao J. and He J. Minimum hydrogen consumption power allocation strategy for the multistack fuel cell (MFC) system based on a discrete approach. Front. Energy Res. 2022, 10, 966852, doi: 10.3389/fenrg.2022.966852.
22. Bouisalmane N. et al. Hydrogen consumption minimization with optimal power allocation of multistack fuel cell system using particle swarm optimization, in proc. 2021 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, 2021, pp. 154-160, doi: 10.1109/ITEC51675.2021.9490111.
23. Sahwal C. P., Sengupta S., Dinh T.Q. Advanced equivalent consumption minimization strategy for fuel cell hybrid electric vehicles. Journal of Cleaner Production, 2024, 437, 140366, doi: 10.1016/j.jclepro.2023.140366.
24. Moghadari M., Kandidayeni M., Boulon L., Chaoui H. «Hydrogen minimization of a hybrid multistack fuel cell vehicle using an optimization-based strategy», in proc. 2021 IEEE Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, 2021, pp. 1-5, doi: 10.1109/VPPC53923.2021.9699262.
25. Calderón A. J., Vivas F. J., Segura F., Andújar J. M. Integration of a multistack fuel cell system in microgrids: A solution based on model predictive control. Energies, 2020, 13, 4924, doi: 10.3390/en13184924.
26. Da Costa Lopes F., Kelouwani S., Boulon L., Agbossou K., Marx N., Ettihir K. Neural network modeling strategy applied to a multistack PEM fuel cell system, in proc. 2016 IEEE Transportation Electrification Conference and Expo (ITEC), Dearborn, MI, USA, 2016, pp. 1-7, doi: 10.1109/ITEC.2016.7520294.
27. Ghaderi R., Kandidayeni M., Soleymani M., Boulon L., Trovão J. P. F. Online health-conscious energy management strategy for a hybrid multistack fuel cell vehicle based on game theory. IEEE Transactions on Vehicular Technology, 2022, 71 (6), pp. 5704-5714, doi: 10.1109/TVT.2022.316731.
28. Yan Y., Li Q., Chen W., Huang W., Liu J., Liu J. Online control and power coordination method for multis-tack fuel cells system based on optimal power allocation, IEEE Transactions on Industrial Electronics, 2021. 68, 9, pp. 8158-8168, doi: 10.1109/TIE.2020.3016240.
29. Kandidayeni M., Kelouwani S., Boulon L., Trovão J. P. Designing a hierarchical energy management strategy for a hybrid multistack fuel cell system, in proc. 2023 IEEE Vehicle Power and Propulsion Conference (VPPC), Milan, Italy, 2023, pp. 1-5, doi: 10.1109/VPPC60535.2023.10403373.
30. Marx N., Toquica Cárdenas D. C., Boulon L., Gustin F., Hissel D. Degraded mode operation of multistack fuel cell systems. IET Electr. Syst. Transp., 2016, 6, pp. 3-11, doi: 10.1049/iet-est.2015.0012.
31. Tao S., Chen W., Gan R. et al. Energy management strategy based on dynamic programming with durability extension for fuel cell hybrid tramway. Rail. Eng. Science, 2021, 29, pp. 299–313, doi: 10.1007/s40534-021-00247-w.
32. Benchmark systems for network integration of renewable and distributed energy resources, CIGRE Task Force C6.04.02, Technical Brochure 575, 2014, 119 p.
Рецензия
Для цитирования:
Липужин И.А., Шалухо А.В., Бедретдинов Р.Ш., Шувалова Ю.Н. Разработка и исследование алгоритма управления для снижения расхода водорода энергоустановкой с двумя водородными топливными элементами. Альтернативная энергетика и экология (ISJAEE). 2024;(8):93-110. https://doi.org/10.15518/isjaee.2024.08.093-110
For citation:
Lipuzhin I.A., Shalukho A.V., Bedretdinov R.Sh., Shuvalova Yu.N. Development and research of energy management strategy to minimize hydrogen consumption of dual stack PEMFC system. Alternative Energy and Ecology (ISJAEE). 2024;(8):93-110. (In Russ.) https://doi.org/10.15518/isjaee.2024.08.093-110