

The colorful economics of hydrogen: assessing the costs and viability of different hydrogen production methods – a review
https://doi.org/10.15518/isjaee.2023.12.045-065
Abstract
Increasing greenhouse gas emissions and the increase in renewable energy sources in electricity generation have led to an increasing interest in hydrogen in recent years. As an energy storage solution for renewable energy, hydrogen can contribute to decarbonizing industries and transportation sectors as well as balancing energy systems. In this paper, the primary objective is to examine different methods for producing hydrogen depending on the primary energy source. In addition, it evaluates the economic and environmental performance of three types of hydrogen, known as hydrogen colors, and the significant obstacles to widespread fuel cell adoption. The key finding is that hydrogen's environmental benefits depend heavily on how hydrogen is produced and what fuel is used to produce it. Green hydrogen can only be produced using wind, solar photovoltaic (PV), and hydroelectric power. The emissions from other sources, such as blue hydrogen that uses carbon capture, utilization, and storage (CCUS) or electrolysis using electricity from the grid, are significantly higher than those from grey hydrogen. Furthermore, establishing an international hydrogen market will reduce costs and allow hydrogen to be produced in optimal locations. Lastly, a key unresolved question is whether hydrogen, whatever its color, is economically competitive in any sector of the energy system, despite all external costs associated with it. A policy framework that supports technological advancements, cost reductions, and future priorities will determine hydrogen's success in the future. The transition from grey hydrogen to green hydrogen should be facilitated by this framework.
About the Authors
Manish Kumar SinglaIndia
Manish Kumar Singla, Assistant Professor in the Department of Interdisciplinary Courses in Engineering
140401, Punjab, Rajpura;
11931, Jordan, Amman, Al Arab st. 21-Amman -Jordan
Jyoti Gupta
India
Jyoti Gupta, Assistant Professor in the Department of School and Engineering
122103, Gurugram, Haryana, Sohna Rural, Sohna
S. Beryozkina
Kuwait
Beryozkina S., Dr. sc. ing., Associate Professor in the Electrical Engineering Department
52700, AUM Building, Hadiya
Murodbek Safaraliev
Russian Federation
Safaraliev M. Kh., PhD, Senior Researcher, Department of «Automated Electrical Systems»
620002, Ekaterinburg, Mira str., 19
Manpreet Singh
India
Manpreet Singh, Assistant Professor in the Department of Mechanical Engineering
140401, Chitkara University, Punjab, Rajpura
References
1. IEA. Hydrogen -Analysis - IEA. Available from: https://www.iea.org/reports/hydrogen; December 23, 2021.
2. IEA. Hydrogen - Fuels & Technologies - IEA. Available from: https://www.iea.org/fuels-andtechnologies/hydrogen; December 21, 2021.
3. Dawood, F., Anda, M., & Shafiullah, G. M. (2020). Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 45(7), 3847-3869.
4. El-Shafie, M., Kambara, S., & Hayakawa, Y. (2019). Hydrogen production technologies overview. Journal of Power and Energy Engineering, 7(1), 107-154.
5. Ratnakar, R. R., Gupta, N., Zhang, K., van Doorne, C., Fesmire, J., Dindoruk, B., & Balakotaiah, V. (2021). Hydrogen supply chain and challenges in largescale LH2 storage and transportation. International Journal of Hydrogen Energy, 46(47), 24149-24168.
6. Balcombe, P., Speirs, J., Johnson, E., Martin, J., Brandon, N., & Hawkes, A. (2018). The carbon credentials of hydrogen gas networks and supply chains. Renewable and Sustainable Energy Reviews, 91, 1077-1088.
7. Midilli, A., Kucuk, H., Topal, M. E., Akbulut, U., & Dincer, I. (2021). A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities. International Journal of Hydrogen Energy, 46(50), 25385-25412.
8. Li, J., & Cheng, W. (2020). Comparative life cycle energy consumption, carbon emissions and economic costs of hydrogen production from coke oven gas and coal gasification. International Journal of Hydrogen Energy, 45(51), 27979-27993.
9. Favas, J., Monteiro, E., & Rouboa, A. (2017). Hydrogen production using plasma gasification with steam injection. International journal of hydrogen energy, 42(16), 10997-11005.
10. Bauer, C., Treyer, K., Antonini, C., Bergerson, J., Gazzani, M., Gencer, E., ... & Van der Spek, M. (2022). On the climate impacts of blue hydrogen production. Sustainable Energy & Fuels, 6(1), 66-75.
11. Howarth, R. W., & Jacobson, M. Z. (2021). How green is blue hydrogen?. Energy Science & Engineering, 9(10), 1676-1687.
12. Khan, M. H. A., Daiyan, R., Neal, P., Haque, N., MacGill, I., & Amal, R. (2021). A framework for assessing economics of blue hydrogen production from steam methane reforming using carbon capture storage & utilisation. International Journal of Hydrogen Energy, 46(44), 22685-22706.
13. Amin, A. M., Croiset, E., & Epling, W. (2011). Review of methane catalytic cracking for hydrogen production. International Journal of Hydrogen Energy, 36(4), 2904-2935.
14. Schneider, S., Bajohr, S., Graf, F., & Kolb, T. (2020). State of the art of hydrogen production via pyrolysis of natural gas. ChemBioEng Reviews, 7(5), 150-158.
15. Pérez, B. J. L., Jiménez, J. A. M., Bhardwaj, R., Goetheer, E., van Sint Annaland, M., & Gallucci, F. (2021). Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: Proof of concept & techno-economic assessment. international journal of hydrogen energy, 46(7), 4917-4935.
16. Gerloff, N. (2021). Comparative Life-Cycle- Assessment analysis of three major water electrolysis technologies while applying various energy scenarios for a greener hydrogen production. Journal of Energy Storage, 43, 102759.
17. Chi J, Yu H. Water electrolysis based on renewable energy for hydrogen production. Chin J Catal 2018;39(3):390e4. https://doi.org/10.1016/S1872-2067(17)62949-8.
18. Balzani, V., & Armaroli, N. (2011). The hydrogen issue. ChemSusChem, 4, 21-36.
19. Ball, M., & Weeda, M. (2015). The hydrogen economy–vision or reality?. International Journal of Hydrogen Energy, 40(25), 7903-7919.
20. Rosen, M. A., & Koohi-Fayegh, S. (2016). The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems. Energy, Ecology and Environment, 1, 10-29.
21. Papadias, D. D., Peng, J. K., & Ahluwalia, R. K. (2021). Hydrogen carriers: Production, transmission, decomposition, and storage. International Journal of Hydrogen Energy, 46(47), 24169-24189.
22. Majumdar, A., Deutch, J. M., Prasher, R. S., & Griffin, T. P. (2021). A framework for a hydrogen economy. Joule, 5(8), 1905-1908.
23. Mac Dowell, N., Sunny, N., Brandon, N., Herzog, H., Ku, A. Y., Maas, W., & Shah, N. (2021). The hydrogen economy: A pragmatic path forward. Joule, 5(10), 2524-2529.
24. Bartels, J. R., Pate, M. B., & Olson, N. K. (2010). An economic survey of hydrogen production from conventional and alternative energy sources. International journal of hydrogen energy, 35(16), 8371-8384.
25. Nikolaidis, P., & Poullikkas, A. (2017). A comparative overview of hydrogen production processes. Renewable and sustainable energy reviews, 67, 597-611.
26. Kannah, R. Y., Kavitha, S., & Preethi, O. (2021). Parthiba Karthikeyan, G. Kumar, NV Dai-Viet and J. Rajesh Banu. Bioresour. Technol, 319, 124175.
27. Ozturk, M., & Dincer, I. (2021). A comprehensive review on power-to-gas with hydrogen options for cleaner applications. International Journal of Hydrogen Energy, 46(62), 31511-31522.
28. Dincer, I. (2012). Green methods for hydrogen production. International journal of hydrogen energy, 37(2), 1954-1971.
29. Acar, C., Beskese, A., & Temur, G. T. (2018). Sustainability analysis of different hydrogen production options using hesitant fuzzy AHP. International Journal of Hydrogen Energy, 43(39), 18059-18076.
30. Longden, T., Beck, F. J., Jotzo, F., Andrews, R., & Prasad, M. (2022). ‘Clean’hydrogen?–Comparing the emissions and costs of fossil fuel versus renewable electricity based hydrogen. Applied Energy, 306, 118145.
31. Ji, M., & Wang, J. (2021). Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. International Journal of Hydrogen Energy, 46(78), 38612-38635.
32. Noussan, M., Raimondi, P. P., Scita, R., & Hafner, M. (2020). The role of green and blue hydrogen in the energy transition—A technological and geopolitical perspective. Sustainability, 13(1), 298.
33. Bridges, T., & Merzian, R. (2019). Hydrogen and climate: trojan horse or golden goose. Request for Input—National Hydrogen Strategy.
34. Droege T. What are the colors of hydrogen? Williams Companies; 2021. 23 April 2021; Available from: https://www.williams.com/2021/04/23/what-arethe-colors-ofhydrogen/ [December 22, 2021].
35. Dodgshun J. Hydrogen: Clearing Up the Colours. Available from: https://www.enapter.com/newsroom/hydrogenclearingup-the-colours; December 22, 2021.
36. Sarangi, P. K., & Nanda, S. (2020). Biohydrogen production through dark fermentation. Chemical Engineering & Technology, 43(4), 601-612.
37. Lepage, T., Kammoun, M., Schmetz, Q., & Richel, A. (2021). Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass and Bioenergy, 144, 105920.
38. Dash, S. K., Chakraborty, S., & Elangovan, D. (2023). A Brief Review of Hydrogen Production Methods and Their Challenges. Energies, 16(3), 1141.
39. McKenzie, B. (2020). Shaping Tomorrow’s Global Hydrogen Market. Vie De-Risked Investments.
40. Strategy. The dawn of green hydrogen-Maintaining the GCC's edge in a decarbonized world. Available from: https://www.strategyand.pwc.com/m1/en/reports/2020/the-dawn-of-green-hydrogen/the-dawn-ofgreenhydrogen.
41. El-Emam, R. S., Ozcan, H., & Zamfirescu, C. (2020). Updates on promising thermochemical cycles for clean hydrogen production using nuclear energy. Journal of Cleaner Production, 262, 121424.
42. Strategy. The dawn of green hydrogen-Maintaining the GCC's edge in a decarbonized world. Available from: https://www.strategyand.pwc.com/m1/en/reports/2020/the-dawn-of-green-hydrogen/the-dawn-ofgreenhydrogen.
43. Holm, T., Borsboom-Hanson, T., Herrera, O. E., & Mérida, W. (2021). Hydrogen costs from water electrolysis at high temperature and pressure. Energy Conversion and Management, 237, 114106.
44. Minke, C., Suermann, M., Bensmann, B., & Hanke-Rauschenbach, R. (2021). Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis? International journal of hydrogen energy, 46(46), 23581-23590.
45. Zhao, G., Kraglund, M. R., Frandsen, H. L., Wulff, A. C., Jensen, S. H., Chen, M., & Graves, C. R. (2020). Life cycle assessment of H2O electrolysis technologies. International Journal of Hydrogen Energy, 45(43), 23765-23781.
46. Li, Y., & Taghizadeh-Hesary, F. (2022). The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China. Energy Policy, 160, 112703.
47. Zhang, J., Ling, B., He, Y., Zhu, Y., & Wang, Z. (2022). Life cycle assessment of three types of hydrogen production methods using solar energy. International Journal of Hydrogen Energy, 47(30), 14158-14168.
48. Hassan, Q., Sameen, A. Z., Salman, H. M., Jaszczur, M., & Al-Jiboory, A. K. (2023). Hydrogen energy future: Advancements in storage technologies and implications for sustainability. Journal of Energy Storage, 72, 108404.
49. Makhsoos, A., Kandidayeni, M., Boulon, L., & Pollet, B. G. (2023). A comparative analysis of single and modular proton exchange membrane water electrolyzers for green hydrogen production-a case study in Trois-Rivières. Energy, 282, 128911.
50. Hassan, Q., Sameen, A. Z., Salman, H. M., & Jaszczur, M. (2023). Large-scale green hydrogen production via alkaline water electrolysis using solar and wind energy. International Journal of Hydrogen Energy.
51. Zhou, Y., Li, R., Lv, Z., Liu, J., Zhou, H., & Xu, C. (2022). Green hydrogen: A promising way to the carbon-free society. Chinese Journal of Chemical Engineering.
52. Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in energy and combustion science, 36(3), 307-326.
53. Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International journal of hydrogen energy, 38(12), 4901-4934.
54. Nechache, A., & Hody, S. (2021). Alternative and innovative solid oxide electrolysis cell materials: A short review. Renewable and Sustainable Energy Reviews, 149, 111322.
55. Jeon, S. S., Lim, J., Kang, P. W., Lee, J. W., Kang, G., & Lee, H. (2021). Design principles of NiFelayered double hydroxide anode catalysts for anion exchange membrane water electrolyzers. ACS Applied Materials & Interfaces, 13(31), 37179-37186.
56. Sun, M., Jiang, Y., Tian, M., Yan, H., Liu, R., & Yang, L. (2019). Deposition of platinum on borondoped TiO 2/Ti nanotube arrays as an efficient and stable photocatalyst for hydrogen generation from water splitting. RSC advances, 9(20), 11443-11450.
57. Clifford, C. (2022). Hydrogen power is gaining momentum, but critics say it’s neither efficient nor green enough.
58. Ajanovic, A., Sayer, M., & Haas, R. (2022). The economics and the environmental benignity of different colors of hydrogen. International Journal of Hydrogen Energy, 47(57), 24136-24154.
59. Lee, D. Y., Elgowainy, A., & Dai, Q. (2018). Life cycle greenhouse gas emissions of hydrogen fuel production from chlor-alkali processes in the United States. Applied Energy, 217, 467-479.
60. Kamonsuangkasem, K., Therdthianwong, S., & Therdthianwong, A. (2013). Hydrogen production from yellow glycerol via catalytic oxidative steam reforming. Fuel processing technology, 106, 695-703.
61. Moogi, S., Jae, J., Kannapu, H. P. R., Ahmed, A., Park, E. D., & Park, Y. K. (2020). Enhancement of aromatics from catalytic pyrolysis of yellow poplar: Role of hydrogen and methane decomposition. Bioresource Technology, 315, 123835.
62. Wu, Q., Huang, F., Zhao, M., Xu, J., Zhou, J., & Wang, Y. (2016). Ultra-small yellow defective TiO2 nanoparticles for co-catalyst free photocatalytic hydrogen production. Nano Energy, 24, 63-71.
63. Yu, M., Wang, K., & Vredenburg, H. (2021). Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. International Journal of Hydrogen Energy, 46(41), 21261-21273.
64. Incer-Valverde, J., Korayem, A., Tsatsaronis, G., & Morosuk, T. (2023). “Colors” of hydrogen: DefiDefinitions and carbon intensity. Energy Conversion and Management, 291, 117294.
65. Vega, L. F., & Kentish, S. E. (2022). The Hydrogen economy preface. Industrial & Engineering Chemistry Research, 61(18), 6065-6066.
66. Gür, T. M. (2021). Perspective—Electrochemical Gasification: Revisiting an Old Reaction in New Perspective and Turning "Black" Hydrogen to "Blue". Journal of The Electrochemical Society, 168(11), 114516.
67. Arcos, J. M. M., & Santos, D. M. (2023). The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production. Gases, 3(1), 25-46.
68. Venables, D. S., & Brown, M. E. (1996). Reduction of tungsten oxides with hydrogen and with hydrogen and carbon. Thermochimica acta, 285(2), 361-382.
69. Yamaguchi, D., Sanderson, P. J., Lim, S., & Aye, L. (2009). Supercritical water gasification of Victorian brown coal: Experimental characterisation. international journal of hydrogen energy, 34(8), 3342-3350.
70. Guan, Q., Ding, X. W., Jiang, R., Ouyang, P. L., Gui, J., Feng, L., ... & Song, L. H. (2019). Effects of hydrogen-rich water on the nutrient composition and antioxidative characteristics of sprouted black barley. Food chemistry, 299, 125095.
71. Ewe, The Colours of Hydrogen. Available online: https://www.ewe.com/en/shaping-thefuture/hydrogen/the-colours-ofhydrogen (accessed on 10 June 2022).
72. Hermesmann, M., & Müller, T. E. (2022). Green, turquoise, blue, or grey? Environmentally friendly hydrogen production in transforming energy systems. Progress in Energy and Combustion Science, 90, 100996.
73. Diab, J., Fulcheri, L., Hessel, V., Rohani, V., & Frenklach, M. (2022). Why turquoise hydrogen will Be a game changer for the energy transition. International Journal of Hydrogen Energy, 47(61), 25831-25848.
74. Korányi, T. I., Németh, M., Beck, A., & Horváth, A. (2022). Recent advances in methane pyrolysis: Turquoise hydrogen with solid carbon production. Energies, 15(17), 6342.
75. Ingale, G. U., Kwon, H. M., Jeong, S., Park, D., Kim, W., Bang, B., & Lee, U. (2022). Assessment of Greenhouse Gas Emissions from Hydrogen Production Processes: Turquoise Hydrogen vs. Steam Methane Reforming. Energies, 15(22), 8679.
76. Pinsky, R., Sabharwall, P., Hartvigsen, J., & O’Brien, J. (2020). Comparative review of hydrogen production technologies for nuclear hybrid energy systems. Progress in Nuclear Energy, 123, 103317.
77. Ping, Z., Laijun, W., Songzhe, C., & Jingming, X. (2018). Progress of nuclear hydrogen production through the iodine–sulfur process in China. Renewable and Sustainable Energy Reviews, 81, 1802-1812.
78. Zhiznin, S. Z., Timokhov, V. M., & Gusev, A. L. (2020). Economic aspects of nuclear and hydrogen energy in the world and Russia. International Journal of Hydrogen Energy, 45(56), 31353-31366.
79. Scamman, D., & Newborough, M. (2016). Using surplus nuclear power for hydrogen mobility and power-to-gas in France. International journal of hydrogen energy, 41(24), 10080-10089.
80. Milewski, J., Kupecki, J., Szczęśniak, A., & Uzunow, N. (2021). Hydrogen production in solid oxide electrolyzers coupled with nuclear reactors. International Journal of Hydrogen Energy, 46(72), 35765-35776.
81. Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R., Brandt, A. R., & Hamburg, S. P. (2018). Assessment of methane emissions from the US oil and gas supply chain. Science, 361(6398), 186-188.
82. Antzaras, A. N., & Lemonidou, A. A. (2022). Recent advances on materials and processes for intensified production of blue hydrogen. Renewable and Sustainable Energy Reviews, 155, 111917.
83. Oni, A. O., Anaya, K., Giwa, T., Di Lullo, G., & Kumar, A. (2022). Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions. Energy Conversion and Management, 254, 115245.
84. El-Emam, R. S., Ozcan, H., & Zamfirescu, C. (2020). Updates on promising thermochemical cycles for clean hydrogen production using nuclear energy. Journal of Cleaner Production, 262, 121424.
85. Saha, P., Akash, F. A., Shovon, S. M., Monir, M. U., Ahmed, M. T., Khan, M. F. H., ... & Akter, R. (2023). Grey, blue, and green hydrogen: A comprehensive review of production methods and prospects for zero-emission energy. International Journal of Green Energy, 1-15.
86. Villavicencio, M., Brauer, J., & Trüby, J. (2022). Green hydrogen–How grey can it be?. Robert Schuman Centre for Advanced Studies Research Paper, (2022/44).
87. Moreno-Brieva, F., Guimón, J., & Salazar-Elena, J. C. (2023). From grey to green and from west to east: The geography and innovation trajectories of hydrogen fuel technologies. Energy Research & Social Science, 101, 103146.
88. IEA. Hydrogen production costs using natural gas in selected regions. Statistics - IEA; December 20, 2021. Available from: https://www.iea.org/data-andstatistics/charts/hydrogen-production-costs-usingnatural-gas-inselected-regions-2018-2.
89. Salkuyeh, Y. K., Saville, B. A., & MacLean, H. L. (2018). Techno-economic analysis and life cycle assessment of hydrogen production from different biomass gasification processes. International Journal of Hydrogen Energy, 43(20), 9514-9528.
90. Gambhir, A., Hawkes, A., Nelson, J., Schmidt, O., & Staffell, I. (2017). Future cost and performance of water electrolysis. Int J Hydrogen Energy, 42, 30470-30492.
91. Yue, M., Lambert, H., Pahon, E., Roche, R., Jemei, S., & Hissel, D. (2021). Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews, 146, 111180.
92. Abe, J. O., Popoola, A. P. I., Ajenifuja, E., & Popoola, O. M. (2019). Hydrogen energy, economy and storage: Review and recommendation. International journal of hydrogen energy, 44(29), 15072-15086.
93. Hassan, I. A., Ramadan, H. S., Saleh, M. A., & Hissel, D. (2021). Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives. Renewable and Sustainable Energy Reviews, 149, 111311.
94. Lubitz, W., & Tumas, W. (2007). Hydrogen: an overview. Chemical reviews, 107(10), 3900-3903.
95. Cecere, D., Giacomazzi, E., & Ingenito, A. (2014). A review on hydrogen industrial aerospace applications. International journal of hydrogen energy, 39(20), 10731-10747.
96. Singla, M. K., Nijhawan, P., & Oberoi, A. S. (2021). Hydrogen fuel and fuel cell technology for cleaner future: a review. Environmental Science and Pollution Research, 28, 15607-15626.
97. Singla, M. K., Gupta, J., Nijhawan, P., Oberoi, A. S., Alsharif, M. H., & Jahid, A. (2023). Role of a Unitized Regenerative Fuel Cell in Remote Area Power Supply: A Review. Energies, 16(15), 5761.
98. Singla, M. K., Gupta, J., Singh, B., Nijhawan, P., Abdelaziz, A. Y., & El-Shahat, A. (2023). Parameter Estimation of Fuel Cells Using a Hybrid Optimization Algorithm. Sustainability, 15(8), 6676.
99. Mahato, D. P., Sandhu, J. K., Singh, N. P., & Kaushal, V. On scheduling transaction in grid computing using cuckoo search-ant colony optimization considering load. Cluster Computing, 2020, 23, 1483-1504.
100. Rani, S., Babbar, H., Kaur, P., Alshehri, M. D., & Shah, S. H. A. An optimized approach of dynamic target nodes in wireless sensor network using bio inspired algorithms for maritime rescue. IEEE Transactions on Intelligent Transportation Systems, 2022.
Review
For citations:
Singla M.K., Gupta J., Beryozkina S., Safaraliev M., Singh M. The colorful economics of hydrogen: assessing the costs and viability of different hydrogen production methods – a review. Alternative Energy and Ecology (ISJAEE). 2023;(12):45-65. https://doi.org/10.15518/isjaee.2023.12.045-065