Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Экономика водородной энергии: оценка стоимости и жизнеспособности различных видов водорода обзор методов производства

https://doi.org/10.15518/isjaee.2023.12.045-065

Аннотация

Увеличение выбросов парниковых газов и увеличение использования возобновляемых источников энергии при производстве электроэнергии в последние годы привели к росту интереса к водороду. В качестве решения для хранения энергии из возобновляемых источников водород может способствовать обезуглероживанию отраслей промышленности и транспорта, а также балансировке энергетических систем. В данной статье основной целью является изучение различных методов получения водорода в зависимости от первичного источника энергии. Кроме того, в ней оцениваются экономические и экологические показатели трех типов водорода, известных как «водородные красители», а также существенные препятствия на пути широкого внедрения топливных элементов. Ключевой вывод заключается в том, что экологические преимущества водорода в значительной степени зависят от того, как производится водород и какое топливо используется для его производства. Экологически чистый водород может быть получен только с использованием энергии ветра, солнечной, фотоэлектрической энергии (PV) и гидроэлектростанции. Выбросы от других источников, таких как «голубой водород», использующий улавливание, утилизацию и хранение углерода (CCU), или электролиз с использованием электроэнергии из сети, значительно выше, чем от «серого водорода». Кроме того, создание международного рынка водорода снизит затраты и позволит производить водород в оптимальных местах. И, наконец, ключевой нерешенный вопрос заключается в том, является ли водород, независимо от его цвета, экономически конкурентоспособным в любом секторе энергетической системы, несмотря на все связанные с ним внешние издержки. Стратегическая основа, поддерживающая технологические достижения, снижение затрат и будущие приоритеты, будет определять успех водорода в будущем. Эта основа должна способствовать переходу от «серого» водорода к «зеленому».

Об авторах

Маниш Кумар Сингла
Отделение междисциплинарных инженерных курсов, Инженерно-технологический институт Университета Читкара; Центр прикладных научных исследований, Частный университет прикладных наук
Индия

Маниш Кумар Сингла, доцент кафедры междисциплинарных инженерных курсов

140401, Пенджаб, Раджпура;

11931, Амман, ул. Аль-Араб, 21-Амман, Иордания



Джиоти Гупта
Университет К.Р. Мангалама, Факультет компьютерных наук и инженерии,
Индия

Джиоти Гупта, доцент кафедры школьного образования и инженерного дела

122103, Гуруграм, Харьяна, сельский район Сохна



С. Березкина
Инженерный колледж и технология, Американский университет Ближнего Востока
Кувейт

Березкина Светлана, Доктор технических наук, доцент кафедры электротехники

52700, здание АУМ, Хадия



Муродбек Сафаралиев
Уральский федеральный университет
Россия

Сафаралиев Муродбек Холназарович, к.т.н., старший
научный сотрудник кафедры «Автоматизированных электрических систем»

620002, Екатеринбург, ул. Мира, 19



Манприт Сингх
Инженерно-технологический институт Читкарского университета
Индия

Манприт Сингх, доцент кафедры машиностроения

140401, Университет Читкара, Пенджаб, Раджпура



Список литературы

1. IEA. Hydrogen -Analysis - IEA. Available from: https://www.iea.org/reports/hydrogen; December 23, 2021.

2. IEA. Hydrogen - Fuels & Technologies - IEA. Available from: https://www.iea.org/fuels-andtechnologies/hydrogen; December 21, 2021.

3. Dawood, F., Anda, M., & Shafiullah, G. M. (2020). Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 45(7), 3847-3869.

4. El-Shafie, M., Kambara, S., & Hayakawa, Y. (2019). Hydrogen production technologies overview. Journal of Power and Energy Engineering, 7(1), 107-154.

5. Ratnakar, R. R., Gupta, N., Zhang, K., van Doorne, C., Fesmire, J., Dindoruk, B., & Balakotaiah, V. (2021). Hydrogen supply chain and challenges in largescale LH2 storage and transportation. International Journal of Hydrogen Energy, 46(47), 24149-24168.

6. Balcombe, P., Speirs, J., Johnson, E., Martin, J., Brandon, N., & Hawkes, A. (2018). The carbon credentials of hydrogen gas networks and supply chains. Renewable and Sustainable Energy Reviews, 91, 1077-1088.

7. Midilli, A., Kucuk, H., Topal, M. E., Akbulut, U., & Dincer, I. (2021). A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities. International Journal of Hydrogen Energy, 46(50), 25385-25412.

8. Li, J., & Cheng, W. (2020). Comparative life cycle energy consumption, carbon emissions and economic costs of hydrogen production from coke oven gas and coal gasification. International Journal of Hydrogen Energy, 45(51), 27979-27993.

9. Favas, J., Monteiro, E., & Rouboa, A. (2017). Hydrogen production using plasma gasification with steam injection. International journal of hydrogen energy, 42(16), 10997-11005.

10. Bauer, C., Treyer, K., Antonini, C., Bergerson, J., Gazzani, M., Gencer, E., ... & Van der Spek, M. (2022). On the climate impacts of blue hydrogen production. Sustainable Energy & Fuels, 6(1), 66-75.

11. Howarth, R. W., & Jacobson, M. Z. (2021). How green is blue hydrogen?. Energy Science & Engineering, 9(10), 1676-1687.

12. Khan, M. H. A., Daiyan, R., Neal, P., Haque, N., MacGill, I., & Amal, R. (2021). A framework for assessing economics of blue hydrogen production from steam methane reforming using carbon capture storage & utilisation. International Journal of Hydrogen Energy, 46(44), 22685-22706.

13. Amin, A. M., Croiset, E., & Epling, W. (2011). Review of methane catalytic cracking for hydrogen production. International Journal of Hydrogen Energy, 36(4), 2904-2935.

14. Schneider, S., Bajohr, S., Graf, F., & Kolb, T. (2020). State of the art of hydrogen production via pyrolysis of natural gas. ChemBioEng Reviews, 7(5), 150-158.

15. Pérez, B. J. L., Jiménez, J. A. M., Bhardwaj, R., Goetheer, E., van Sint Annaland, M., & Gallucci, F. (2021). Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: Proof of concept & techno-economic assessment. international journal of hydrogen energy, 46(7), 4917-4935.

16. Gerloff, N. (2021). Comparative Life-Cycle- Assessment analysis of three major water electrolysis technologies while applying various energy scenarios for a greener hydrogen production. Journal of Energy Storage, 43, 102759.

17. Chi J, Yu H. Water electrolysis based on renewable energy for hydrogen production. Chin J Catal 2018;39(3):390e4. https://doi.org/10.1016/S1872-2067(17)62949-8.

18. Balzani, V., & Armaroli, N. (2011). The hydrogen issue. ChemSusChem, 4, 21-36.

19. Ball, M., & Weeda, M. (2015). The hydrogen economy–vision or reality?. International Journal of Hydrogen Energy, 40(25), 7903-7919.

20. Rosen, M. A., & Koohi-Fayegh, S. (2016). The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems. Energy, Ecology and Environment, 1, 10-29.

21. Papadias, D. D., Peng, J. K., & Ahluwalia, R. K. (2021). Hydrogen carriers: Production, transmission, decomposition, and storage. International Journal of Hydrogen Energy, 46(47), 24169-24189.

22. Majumdar, A., Deutch, J. M., Prasher, R. S., & Griffin, T. P. (2021). A framework for a hydrogen economy. Joule, 5(8), 1905-1908.

23. Mac Dowell, N., Sunny, N., Brandon, N., Herzog, H., Ku, A. Y., Maas, W., & Shah, N. (2021). The hydrogen economy: A pragmatic path forward. Joule, 5(10), 2524-2529.

24. Bartels, J. R., Pate, M. B., & Olson, N. K. (2010). An economic survey of hydrogen production from conventional and alternative energy sources. International journal of hydrogen energy, 35(16), 8371-8384.

25. Nikolaidis, P., & Poullikkas, A. (2017). A comparative overview of hydrogen production processes. Renewable and sustainable energy reviews, 67, 597-611.

26. Kannah, R. Y., Kavitha, S., & Preethi, O. (2021). Parthiba Karthikeyan, G. Kumar, NV Dai-Viet and J. Rajesh Banu. Bioresour. Technol, 319, 124175.

27. Ozturk, M., & Dincer, I. (2021). A comprehensive review on power-to-gas with hydrogen options for cleaner applications. International Journal of Hydrogen Energy, 46(62), 31511-31522.

28. Dincer, I. (2012). Green methods for hydrogen production. International journal of hydrogen energy, 37(2), 1954-1971.

29. Acar, C., Beskese, A., & Temur, G. T. (2018). Sustainability analysis of different hydrogen production options using hesitant fuzzy AHP. International Journal of Hydrogen Energy, 43(39), 18059-18076.

30. Longden, T., Beck, F. J., Jotzo, F., Andrews, R., & Prasad, M. (2022). ‘Clean’hydrogen?–Comparing the emissions and costs of fossil fuel versus renewable electricity based hydrogen. Applied Energy, 306, 118145.

31. Ji, M., & Wang, J. (2021). Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. International Journal of Hydrogen Energy, 46(78), 38612-38635.

32. Noussan, M., Raimondi, P. P., Scita, R., & Hafner, M. (2020). The role of green and blue hydrogen in the energy transition—A technological and geopolitical perspective. Sustainability, 13(1), 298.

33. Bridges, T., & Merzian, R. (2019). Hydrogen and climate: trojan horse or golden goose. Request for Input—National Hydrogen Strategy.

34. Droege T. What are the colors of hydrogen? Williams Companies; 2021. 23 April 2021; Available from: https://www.williams.com/2021/04/23/what-arethe-colors-ofhydrogen/ [December 22, 2021].

35. Dodgshun J. Hydrogen: Clearing Up the Colours. Available from: https://www.enapter.com/newsroom/hydrogenclearingup-the-colours; December 22, 2021.

36. Sarangi, P. K., & Nanda, S. (2020). Biohydrogen production through dark fermentation. Chemical Engineering & Technology, 43(4), 601-612.

37. Lepage, T., Kammoun, M., Schmetz, Q., & Richel, A. (2021). Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass and Bioenergy, 144, 105920.

38. Dash, S. K., Chakraborty, S., & Elangovan, D. (2023). A Brief Review of Hydrogen Production Methods and Their Challenges. Energies, 16(3), 1141.

39. McKenzie, B. (2020). Shaping Tomorrow’s Global Hydrogen Market. Vie De-Risked Investments.

40. Strategy. The dawn of green hydrogen-Maintaining the GCC's edge in a decarbonized world. Available from: https://www.strategyand.pwc.com/m1/en/reports/2020/the-dawn-of-green-hydrogen/the-dawn-ofgreenhydrogen.

41. El-Emam, R. S., Ozcan, H., & Zamfirescu, C. (2020). Updates on promising thermochemical cycles for clean hydrogen production using nuclear energy. Journal of Cleaner Production, 262, 121424.

42. Strategy. The dawn of green hydrogen-Maintaining the GCC's edge in a decarbonized world. Available from: https://www.strategyand.pwc.com/m1/en/reports/2020/the-dawn-of-green-hydrogen/the-dawn-ofgreenhydrogen.

43. Holm, T., Borsboom-Hanson, T., Herrera, O. E., & Mérida, W. (2021). Hydrogen costs from water electrolysis at high temperature and pressure. Energy Conversion and Management, 237, 114106.

44. Minke, C., Suermann, M., Bensmann, B., & Hanke-Rauschenbach, R. (2021). Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis? International journal of hydrogen energy, 46(46), 23581-23590.

45. Zhao, G., Kraglund, M. R., Frandsen, H. L., Wulff, A. C., Jensen, S. H., Chen, M., & Graves, C. R. (2020). Life cycle assessment of H2O electrolysis technologies. International Journal of Hydrogen Energy, 45(43), 23765-23781.

46. Li, Y., & Taghizadeh-Hesary, F. (2022). The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China. Energy Policy, 160, 112703.

47. Zhang, J., Ling, B., He, Y., Zhu, Y., & Wang, Z. (2022). Life cycle assessment of three types of hydrogen production methods using solar energy. International Journal of Hydrogen Energy, 47(30), 14158-14168.

48. Hassan, Q., Sameen, A. Z., Salman, H. M., Jaszczur, M., & Al-Jiboory, A. K. (2023). Hydrogen energy future: Advancements in storage technologies and implications for sustainability. Journal of Energy Storage, 72, 108404.

49. Makhsoos, A., Kandidayeni, M., Boulon, L., & Pollet, B. G. (2023). A comparative analysis of single and modular proton exchange membrane water electrolyzers for green hydrogen production-a case study in Trois-Rivières. Energy, 282, 128911.

50. Hassan, Q., Sameen, A. Z., Salman, H. M., & Jaszczur, M. (2023). Large-scale green hydrogen production via alkaline water electrolysis using solar and wind energy. International Journal of Hydrogen Energy.

51. Zhou, Y., Li, R., Lv, Z., Liu, J., Zhou, H., & Xu, C. (2022). Green hydrogen: A promising way to the carbon-free society. Chinese Journal of Chemical Engineering.

52. Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in energy and combustion science, 36(3), 307-326.

53. Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International journal of hydrogen energy, 38(12), 4901-4934.

54. Nechache, A., & Hody, S. (2021). Alternative and innovative solid oxide electrolysis cell materials: A short review. Renewable and Sustainable Energy Reviews, 149, 111322.

55. Jeon, S. S., Lim, J., Kang, P. W., Lee, J. W., Kang, G., & Lee, H. (2021). Design principles of NiFelayered double hydroxide anode catalysts for anion exchange membrane water electrolyzers. ACS Applied Materials & Interfaces, 13(31), 37179-37186.

56. Sun, M., Jiang, Y., Tian, M., Yan, H., Liu, R., & Yang, L. (2019). Deposition of platinum on borondoped TiO 2/Ti nanotube arrays as an efficient and stable photocatalyst for hydrogen generation from water splitting. RSC advances, 9(20), 11443-11450.

57. Clifford, C. (2022). Hydrogen power is gaining momentum, but critics say it’s neither efficient nor green enough.

58. Ajanovic, A., Sayer, M., & Haas, R. (2022). The economics and the environmental benignity of different colors of hydrogen. International Journal of Hydrogen Energy, 47(57), 24136-24154.

59. Lee, D. Y., Elgowainy, A., & Dai, Q. (2018). Life cycle greenhouse gas emissions of hydrogen fuel production from chlor-alkali processes in the United States. Applied Energy, 217, 467-479.

60. Kamonsuangkasem, K., Therdthianwong, S., & Therdthianwong, A. (2013). Hydrogen production from yellow glycerol via catalytic oxidative steam reforming. Fuel processing technology, 106, 695-703.

61. Moogi, S., Jae, J., Kannapu, H. P. R., Ahmed, A., Park, E. D., & Park, Y. K. (2020). Enhancement of aromatics from catalytic pyrolysis of yellow poplar: Role of hydrogen and methane decomposition. Bioresource Technology, 315, 123835.

62. Wu, Q., Huang, F., Zhao, M., Xu, J., Zhou, J., & Wang, Y. (2016). Ultra-small yellow defective TiO2 nanoparticles for co-catalyst free photocatalytic hydrogen production. Nano Energy, 24, 63-71.

63. Yu, M., Wang, K., & Vredenburg, H. (2021). Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. International Journal of Hydrogen Energy, 46(41), 21261-21273.

64. Incer-Valverde, J., Korayem, A., Tsatsaronis, G., & Morosuk, T. (2023). “Colors” of hydrogen: DefiDefinitions and carbon intensity. Energy Conversion and Management, 291, 117294.

65. Vega, L. F., & Kentish, S. E. (2022). The Hydrogen economy preface. Industrial & Engineering Chemistry Research, 61(18), 6065-6066.

66. Gür, T. M. (2021). Perspective—Electrochemical Gasification: Revisiting an Old Reaction in New Perspective and Turning "Black" Hydrogen to "Blue". Journal of The Electrochemical Society, 168(11), 114516.

67. Arcos, J. M. M., & Santos, D. M. (2023). The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production. Gases, 3(1), 25-46.

68. Venables, D. S., & Brown, M. E. (1996). Reduction of tungsten oxides with hydrogen and with hydrogen and carbon. Thermochimica acta, 285(2), 361-382.

69. Yamaguchi, D., Sanderson, P. J., Lim, S., & Aye, L. (2009). Supercritical water gasification of Victorian brown coal: Experimental characterisation. international journal of hydrogen energy, 34(8), 3342-3350.

70. Guan, Q., Ding, X. W., Jiang, R., Ouyang, P. L., Gui, J., Feng, L., ... & Song, L. H. (2019). Effects of hydrogen-rich water on the nutrient composition and antioxidative characteristics of sprouted black barley. Food chemistry, 299, 125095.

71. Ewe, The Colours of Hydrogen. Available online: https://www.ewe.com/en/shaping-thefuture/hydrogen/the-colours-ofhydrogen (accessed on 10 June 2022).

72. Hermesmann, M., & Müller, T. E. (2022). Green, turquoise, blue, or grey? Environmentally friendly hydrogen production in transforming energy systems. Progress in Energy and Combustion Science, 90, 100996.

73. Diab, J., Fulcheri, L., Hessel, V., Rohani, V., & Frenklach, M. (2022). Why turquoise hydrogen will Be a game changer for the energy transition. International Journal of Hydrogen Energy, 47(61), 25831-25848.

74. Korányi, T. I., Németh, M., Beck, A., & Horváth, A. (2022). Recent advances in methane pyrolysis: Turquoise hydrogen with solid carbon production. Energies, 15(17), 6342.

75. Ingale, G. U., Kwon, H. M., Jeong, S., Park, D., Kim, W., Bang, B., & Lee, U. (2022). Assessment of Greenhouse Gas Emissions from Hydrogen Production Processes: Turquoise Hydrogen vs. Steam Methane Reforming. Energies, 15(22), 8679.

76. Pinsky, R., Sabharwall, P., Hartvigsen, J., & O’Brien, J. (2020). Comparative review of hydrogen production technologies for nuclear hybrid energy systems. Progress in Nuclear Energy, 123, 103317.

77. Ping, Z., Laijun, W., Songzhe, C., & Jingming, X. (2018). Progress of nuclear hydrogen production through the iodine–sulfur process in China. Renewable and Sustainable Energy Reviews, 81, 1802-1812.

78. Zhiznin, S. Z., Timokhov, V. M., & Gusev, A. L. (2020). Economic aspects of nuclear and hydrogen energy in the world and Russia. International Journal of Hydrogen Energy, 45(56), 31353-31366.

79. Scamman, D., & Newborough, M. (2016). Using surplus nuclear power for hydrogen mobility and power-to-gas in France. International journal of hydrogen energy, 41(24), 10080-10089.

80. Milewski, J., Kupecki, J., Szczęśniak, A., & Uzunow, N. (2021). Hydrogen production in solid oxide electrolyzers coupled with nuclear reactors. International Journal of Hydrogen Energy, 46(72), 35765-35776.

81. Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R., Brandt, A. R., & Hamburg, S. P. (2018). Assessment of methane emissions from the US oil and gas supply chain. Science, 361(6398), 186-188.

82. Antzaras, A. N., & Lemonidou, A. A. (2022). Recent advances on materials and processes for intensified production of blue hydrogen. Renewable and Sustainable Energy Reviews, 155, 111917.

83. Oni, A. O., Anaya, K., Giwa, T., Di Lullo, G., & Kumar, A. (2022). Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions. Energy Conversion and Management, 254, 115245.

84. El-Emam, R. S., Ozcan, H., & Zamfirescu, C. (2020). Updates on promising thermochemical cycles for clean hydrogen production using nuclear energy. Journal of Cleaner Production, 262, 121424.

85. Saha, P., Akash, F. A., Shovon, S. M., Monir, M. U., Ahmed, M. T., Khan, M. F. H., ... & Akter, R. (2023). Grey, blue, and green hydrogen: A comprehensive review of production methods and prospects for zero-emission energy. International Journal of Green Energy, 1-15.

86. Villavicencio, M., Brauer, J., & Trüby, J. (2022). Green hydrogen–How grey can it be?. Robert Schuman Centre for Advanced Studies Research Paper, (2022/44).

87. Moreno-Brieva, F., Guimón, J., & Salazar-Elena, J. C. (2023). From grey to green and from west to east: The geography and innovation trajectories of hydrogen fuel technologies. Energy Research & Social Science, 101, 103146.

88. IEA. Hydrogen production costs using natural gas in selected regions. Statistics - IEA; December 20, 2021. Available from: https://www.iea.org/data-andstatistics/charts/hydrogen-production-costs-usingnatural-gas-inselected-regions-2018-2.

89. Salkuyeh, Y. K., Saville, B. A., & MacLean, H. L. (2018). Techno-economic analysis and life cycle assessment of hydrogen production from different biomass gasification processes. International Journal of Hydrogen Energy, 43(20), 9514-9528.

90. Gambhir, A., Hawkes, A., Nelson, J., Schmidt, O., & Staffell, I. (2017). Future cost and performance of water electrolysis. Int J Hydrogen Energy, 42, 30470-30492.

91. Yue, M., Lambert, H., Pahon, E., Roche, R., Jemei, S., & Hissel, D. (2021). Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews, 146, 111180.

92. Abe, J. O., Popoola, A. P. I., Ajenifuja, E., & Popoola, O. M. (2019). Hydrogen energy, economy and storage: Review and recommendation. International journal of hydrogen energy, 44(29), 15072-15086.

93. Hassan, I. A., Ramadan, H. S., Saleh, M. A., & Hissel, D. (2021). Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives. Renewable and Sustainable Energy Reviews, 149, 111311.

94. Lubitz, W., & Tumas, W. (2007). Hydrogen: an overview. Chemical reviews, 107(10), 3900-3903.

95. Cecere, D., Giacomazzi, E., & Ingenito, A. (2014). A review on hydrogen industrial aerospace applications. International journal of hydrogen energy, 39(20), 10731-10747.

96. Singla, M. K., Nijhawan, P., & Oberoi, A. S. (2021). Hydrogen fuel and fuel cell technology for cleaner future: a review. Environmental Science and Pollution Research, 28, 15607-15626.

97. Singla, M. K., Gupta, J., Nijhawan, P., Oberoi, A. S., Alsharif, M. H., & Jahid, A. (2023). Role of a Unitized Regenerative Fuel Cell in Remote Area Power Supply: A Review. Energies, 16(15), 5761.

98. Singla, M. K., Gupta, J., Singh, B., Nijhawan, P., Abdelaziz, A. Y., & El-Shahat, A. (2023). Parameter Estimation of Fuel Cells Using a Hybrid Optimization Algorithm. Sustainability, 15(8), 6676.

99. Mahato, D. P., Sandhu, J. K., Singh, N. P., & Kaushal, V. On scheduling transaction in grid computing using cuckoo search-ant colony optimization considering load. Cluster Computing, 2020, 23, 1483-1504.

100. Rani, S., Babbar, H., Kaur, P., Alshehri, M. D., & Shah, S. H. A. An optimized approach of dynamic target nodes in wireless sensor network using bio inspired algorithms for maritime rescue. IEEE Transactions on Intelligent Transportation Systems, 2022.


Рецензия

Для цитирования:


Сингла М.К., Гупта Д., Березкина С., Сафаралиев М., Сингх М. Экономика водородной энергии: оценка стоимости и жизнеспособности различных видов водорода обзор методов производства. Альтернативная энергетика и экология (ISJAEE). 2023;(12):45-65. https://doi.org/10.15518/isjaee.2023.12.045-065

For citation:


Singla M.K., Gupta J., Beryozkina S., Safaraliev M., Singh M. The colorful economics of hydrogen: assessing the costs and viability of different hydrogen production methods – a review. Alternative Energy and Ecology (ISJAEE). 2023;(12):45-65. https://doi.org/10.15518/isjaee.2023.12.045-065

Просмотров: 86


ISSN 1608-8298 (Print)