

Development of an automatic calculation of the temperature gradient in Sieverts apparatus for testing sorption properties of hydrogen storage materials
https://doi.org/10.15518/isjaee.2024.10.200-212
Abstract
This paper discusses the optimization of the Sieverts-type apparatus with the goal of achieving precise measurements of the interaction between hydrogen and materials using volumetric methods. In order to obtain accurate and reliable measurements of sorption and desorption kinetics in hydrogen storage materials, it is important to reduce the effects of temperature gradients within the Sieverts-type apparatus. Two methods were developed to minimize the impact of temperature gradients on hydrogen measurements. The first method involved segmenting the gas path and measuring the temperature in each section. The second method utilized the total volume of the gas path, divided into two dynamic volumes for hot and cold sections. Experimental equations were derived to calculate the hydrogen content, taking into account the effects of temperature gradient, for both methods. These methods were then implemented, and the results were compared. The most successful result was obtained using the second method, with the maximum deviation of 0,1% of the initial gas volume.
About the Authors
D. E. KhaleevRussian Federation
Khaleev Dmitry Evgenievich, postgraduate student of the School of Nuclear Technology
634050, Tomsk, Lenin Ave., 30
A. A. Spiridonova
Russian Federation
Spiridonova Alena Alexandrovna, postgraduate student of the School of Nuclear Technology; Leading Metrology Engineer
634050, Tomsk, Lenin Ave., 30
634012, Tomsk, st. Kosareva, 17a
A. M. Lider
Russian Federation
Lider Andrey Markovich, Dr., Professor; Head of the Department of the Engineering School of Nuclear Technologies
634050, Tomsk, Lenin Ave., 30
G. V. Garanin
Russian Federation
Garanin Georgiy Viktorovich, PhD, Associate Professor; Head of Laboratory of the Engineering School of Nuclear Technologies
634050, Tomsk, Lenin Ave., 30
References
1. . Broom D. P. The accuracy of hydrogen sorption measurements on potential storage materials. // International Journal of Hydrogen Energy. – 2007. – Vol. 32. – P. 4871-4888. https://doi.org/10.1016/j.ijhydene.2007.07.056
2. . Burress J., Bethea D., Troub B. Combination volumetric and gravimetric sorption instrument for high accuracy measurements of methane adsorption // Review of Scientific Instruments. – 2017. – Т. 88. – № 5. https://doi.org/10.1063/1.4982889
3. . Zhou D. et al. Thermal analysis and performance improvement of heat transfer in sample cell of Sieverts apparatus //International Journal of Hydrogen Energy. – 2024. – Т. 50. – С. 61-70. https://doi.org/10.1016/j.jhydene.2023.06.211
4. . Gray E. M. A. Reliably measuring hydrogen uptake in storage materials // Solid-state hydrogen storage. – Woodhead Publishing, 2008. – С. 174-204. https://doi.org/10.1533/9781845694944.2.174
5. . Banerjee S., Ruz P. Synthesis and Characterization of Metal Hydrides and Their Application // Indian Institute of Metals Series. – 2021. – С. 785-830. https://doi.org/10.1007/978-981-16-1892-5_16
6. . Cheng H. H. et al. Design of PC based high pressure hydrogen absorption/desorption apparatus // International Journal of Hydrogen Energy. – 2007. – Vol. 32. – №. 14. – P. 3046-3053. https://doi.org/10.1016/j.ijhydene.2007.01.010
7. . Gray E. MacA., Webb C. J. Performance analysis of a Sieverts apparatus for measuring hydrogen uptake // International Journal of Hydrogen Energy. – 2022. – Vol. 47. – P. 14628-14636. https://doi.org/10.1016/j.ijhydene.2022.02.196
8. . Sheppard D. A. et al. Methods for accurate high-temperature Sieverts-type hydrogen measurements of metal hydrides // Journal of Alloys and Compounds. – 2019. – Т. 787. – С. 1225-1237. https://doi.org/10.1016/j.jallcom.2019.02.067
9. . Canjura Rodriguez P., Gallandat N., Züttel A. Accurate measurement of pressure-composition isotherms and determination of thermodynamic and kinetic parameters of metal hydrides // International Journal of Hydrogen Energy. – 2019. – Т. 44. – № 26. – С. 1358313591. https://doi.org/10.1016/j.ijhydene.2019.03.224
10. . Webb C. J., Gray E. MacA. The effect of inaccurate volume calibrations on hydrogen uptake measured by the Sieverts method // International Journal of Hydrogen Energy. – 2014. – Т. 39. – № 5. – С. 2168-2174. https://doi.org/10.1016/j.ijhydene.2013.11.121
11. . Parilla P. A. et al. Recommended volumetric capacity definitions and protocols for accurate, standardized and unambiguous metrics for hydrogen storage materials // Applied Physics A. – 2016. – Т. 122. – С. 1-18. https://doi.org/10.1007/s00339-016-9654-1
12. . Andreasen A. Design and building of a new experimental setup for testing hydrogen storage materials // Risø-Report. – 2005. – P. 52. https://doi.org/10.13140/RG.2.2.32450.99527
13. . Checchetto R., Trettel G., Miotello A. Sieverttype apparatus for the study of hydrogen storage in solids // Meas. Sci. Technol. – 2003. – Vol. 15. – № 1. – P. 127-130. https://doi.org/10.1088/0957-0233/15/1/017
14. . Zhu H., Cheng H., Chen D., Ding Z. Development of compact and efficient volumetric apparatus for measuring absorption/desorption properties of hydrogen storage materials. // International Journal of Hydrogen Energy. – 2022. – Vol. 47. – P. 32565-32581. https://doi.org/10.1016/j.ijhydene.2022.07.148
15. . Carrillo-Bucio J. L., Tena-Garcia J. R., Armenta-Garcia E. P., Hernandez-Silva O., Cabañas-Moreno J. G. Suárez-Alcántara K. Low-cost Sieverts-type apparatus for the study of hydriding/dehydriding reactions. // HardwareX. – 2018. – Vol. 4. – P. e00036. https://doi.org/10.1016/j.ohx.2018.e00036
16. . Policicchio A. et al. Volumetric apparatus for hydrogen adsorption and diffusion measurements: Sources of systematic error and impact of their experimental resolutions // Review of scientific instruments. – 2013. – Т. 84. – №. 10. https://doi.org/10.1063/1.4824485
17. . Pyle D. S., Gray E. MacA., Webb C. J. A sieverts apparatus for measuring high-pressure hydrogen isotherms on porous materials // International Journal of Hydrogen Energy. – 2017. – Т. 42. – № 31. – С. 20111-20119. https://doi.org/10.1016/j.ijhydene.2017.06.126
18. . Webb C. J., Gray E. MacA. Analysis of the uncertainties in gas uptake measurements using the Sieverts method // International Journal of Hydrogen Energy. – 2014. – Т. 39. – № 1. – С. 366-375. https://doi.org/10.1016/j.ijhydene.2013.09.155
19. . Demirocak D. E. et al. Volumetric hydrogen sorption measurements – Uncertainty error analysis and the importance of thermal equilibration time // International Journal of Hydrogen Energy. – 2013. – Т. 38. – № 3. – С. 1469-1477. https://doi.org/10.1016/j.ijhydene.2012.11.013
20. . Sircar S., Wang C. -Y., Lueking A. D. Design of high pressure differential volumetric adsorption measurements with increased accuracy // Adsorption. – 2013. – Т. 19. – № 6. – С. 1211-1234. https://doi.org/10.1007/s10450-013-9558-8
21. . Charbonnier V. et al. How to evaluate hydrogen storage properties by Sieverts’ method in the pressure range up to 100 MPa // Journal of Alloys and Compounds. – 2023. – Т. 960. – С. 170860. https://doi.org/10.1016/j.jallcom.2023.170860
22. . Kudiiarov V. N. et al. Application of automated complex Gas Reaction Controller for hydrogen storage materials investigation // Advanced Materials Research. – Trans Tech Publications Ltd, 2013. – Vol. 740. – P. 690-693. https://doi.org/10.4028/www.scientific.net/AMR.740.690
23. . Zhu H., Zhou D., Chen D., Cheng H. Design of ultra-efficient and automatically temperature-variable cycle (TVC) Sieverts apparatus for testing sorption properties of hydrogen storage materials // International Journal of Hydrogen Energy. – 2024. – Vol. 62. – P. 172-185. https://doi.org/10.1016/j.ijhydene.2024.03.018
24. . Broom D. P., Webb C. J. Pitfalls in the characterisation of the hydrogen sorption properties of materials //International Journal of Hydrogen Energy. – 2017. – Т. 42. – №. 49. – С. 29320-29343. https://doi.org/10.1016/j.ijhydene.2017.10.028
25. . Certificate of state registration of computer program No. 2023668766 Russian Federation. Program module for automation of the experiment of the pressurecompound isotherm construction on the Siverts-type apparatus: No. 2023668045: applied. 04.09.2023: published 04.09.2023 / D. E. Khaleev; applicant Federal State Autonomous Educational Institution of Higher Education «National Research Tomsk Polytechnic University». – P. 1.
Review
For citations:
Khaleev D.E., Spiridonova A.A., Lider A.M., Garanin G.V. Development of an automatic calculation of the temperature gradient in Sieverts apparatus for testing sorption properties of hydrogen storage materials. Alternative Energy and Ecology (ISJAEE). 2024;(10):200-212. (In Russ.) https://doi.org/10.15518/isjaee.2024.10.200-212