Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Study of optical properties of thin films of tin oxide

https://doi.org/10.15518/isjaee.2024.10.213-225

Abstract

The article presents an experimental and theoretical study of the optical properties of tin oxide thin films. It is in thin films that the adsorption of gas molecules has a greater effect on the conductivity of the layers. The method of measurement using a spectrophotometer and further processing of experimental optical transmission spectra is presented. Transmission spectra were measured, from which the band gap width was determined.

Tin oxide films made by spray pyrolysis from a sol-gel solution were studied, and the structural properties of tin oxide were also considered. The experiment was conducted as follows. Two-aqueous tin chloride (SnCl2 = 2H2O) (0,5 M) is used as a precursor, isopropyl alcohol was used as a solvent. The solution was stirred for 1 hour, followed by 24 hours of exposure. The application of spray pyrolysis of SnO2 was carried out on the basis of a solution for the sol-gel method (SPGZ). To do this, the solution was filled into the tank of the automated spray pyrolysis unit USP-3. Optical properties were studied using a spectrophotometer SPECKS SSP-715-M spectrophotometer manufactured by JSC LOMO. It was revealed that the films have a transparency of T = 60-80% in the visible range of the spectrum. The optical properties of tin oxide films at temperatures of 200, 300, 400 °C are presented. The width of the forbidden zone, which is the value at a temperature of 200 °C – 3,96 eV, 300 °C – 3,98 eV, 400 °C – 3,98 eV.

About the Authors

A. V. Zvyagintseva
Federal State Budgetary Educational Institution of Higher Education «Voronezh State Technical University»
Russian Federation

Zvyagintseva Alla Vitalievna, Associate professor. Academic degree: Candidate of Technical Sciences

394006, Voronezh, 20th Anniversary of October St., 84



I. N. Panteleev
Federal State Budgetary Educational Institution of Higher Education «Voronezh State Technical University»
Russian Federation

Panteleev Igor Nikolaevich, Associate Professor, Candidate of Physicaland Mathematical Sciences

394006, Voronezh, 20th Anniversary of October St., 84



S. V. Dolzhenkov
Federal State Budgetary Educational Institution of Higher Education «Voronezh State Technical University»
Russian Federation

Dolzhenkov Svyatoslav Vladimirovich, Magister

394006, Voronezh, 20th Anniversary of October St., 84



References

1. . Hecht, D. S; Hu; Irvin, G. Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene and Metallic Nanostructures /󠇡/󠇡 Advanced Materials. - 2011. – 23. – P. 1482-1513.

2. . Zvyagintseva A. V. Temperature ranges of deuterium desorption from Ni–In composites /󠇡 A. V. Zvyagintseva, A. N. Morozov, I. M. Kiryan /󠇡/󠇡 The interaction of hydrogen isotopes with structural materials. IHISM´14. Collection of reports of the Fifth International Conference and the Ninth International School of Young Scientists and Specialists named after A. A. Kurdyumov /󠇡 Ed. Dr. of Technical Sciences A. A. Yukhimchuk. Sarov: FSUE RFNC–VNIIEF, 2015. – Рр. 106-119.

3. . Zvyagintseva A. V., Gusev A. L., Shalimov Yu. N. Kinetics of electrochemical metal hydrogenation processes in the presence of boron /󠇡/󠇡 Alternative Energy and ecology (ISJAEE). – 2009. – № 4 (72). – Pp. 20-27.

4. . Zvyagintseva A. V. Hybrid functional materials forming metal structures with optimal defects for hydrogen storage in hydride form /󠇡/󠇡 Alternative Energy and Ecology (ISJAEE). – 2017. – №№ 16-18 (228-230). – Pp. 89-103.

5. . Edwards, P. P., Porch, A., Jones, M. O., Morgan, D. V., Perks, R. M. Basic materials physics of transparent conducting oxides /󠇡/󠇡 Dalton Transactions. – 2004. – Vol. 19. – Pр. 2995-3002.

6. . Minami T. Transparent conducting oxide semiconductors for transparent electrodes /󠇡/󠇡 Semiconductor Science and Technology. – 2005. – Vol. 20. – No. 4. – P. S35-S44.

7. . Zvyagintseva A. V. Hybrid functional materials forming a metal structure with optimal imperfection for storing hydrogen in a hydride form /󠇡 A. V. Zvyagintseva /󠇡/󠇡 International Journal of Hydrogen Energy. – 2020. – Vol. 45. – № 46. – P. 24991-25001.

8. . Zvyagintseva A. Physical modeling of hydrogen permeability of a cylindrical shell /󠇡 A. V. Zvyagintseva /󠇡/󠇡 Journal: AIP Conference Proceedings. Krasnoyarsk Scientific Centre of the Siberian Branch of the Russian Academy of Sciences. Melville, New York, United States of America. – 2021. – P. 20057.

9. . Zvyagintseva A. V. Potential possibilities of hydrogen accumulation in nickel-Based solid-state materials /󠇡IOP: Materials Science and Engineering /󠇡/󠇡 Bristol: Publishing house: Institute of physics and IOP Publishing Limited. – 2020. – Vol. 919(6). – P. 062054-062059.

10. . Agashe C. and Major S. S. Effect of F, Cl and Br doping on the electrical properties of sprayed SnO2 films /󠇡/󠇡 J. Mater. Sci. Lett. – 1996. – Vol. 15. – P. 497.

11. . Stjema B., Olsson E., and Granqvist C. G. Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo /󠇡/󠇡 J. Appl. Phys. – 1994. – Vol. 76. – № 6. – Pр. 3797-3817.

12. . Peltzer E. L. y Blanca, Svane A., Christensen N. E., Rodriguez C. O., Cappannini O. M. and Moreno M. S. Calculated static and dynamic properties of β-Sn and Sn-O compounds /󠇡/󠇡 Physical review B. Condensed Matter. – 1993. – Vol. 48. – № 21. – Pр. 15712-15718.

13. . Mishra K. C., Johnson K. H. and Schmidt P. C. Electronic structure of antimony – doped tin oxide /󠇡/󠇡 Physical review B. – 1995. – Vol. 51. – № 20. – Pр. 13972-13976.

14. . Ripan R. Inorganic chemistry. Chemistry of metals /󠇡 R. Ripan, I. Chetyanu. – M.: Mir, 1971. – Vol. 1. – 561 p.

15. . Sivukhin D. V. General course of physics volume 3 /󠇡 FIZMATLIT. – Moscow: MIPT Publishing House, 1989. – Рp. 427-656.

16. . 16. Odaka Y. Mi, H., and Iwata S. Electronic structure and optical properties of ZnO, SnO2 and In2O3 /󠇡/󠇡 Japanese Journal of Applied Physics. – 1999. – Vol. 38. – Pр. 3453-3458.

17. . Button K. J., Fonstad C. G. and Dreybrodt W. Determination of the electron masses in stannic oxide by submillimeter cyclotron resonance /󠇡/󠇡 Physical review B. – 1971. – Vol. 4. – № 12. – P. 4539-4542.

18. . Sanon G., Rup R., Mansingh A. Band gap narrowing and band structure in degenerate tin oxide (SnO2) films /󠇡/󠇡 Physical review B. – 1991. – Vol. 44. – № 11. – P. 5672-5680.

19. . Zvyagintseva A. V. Structural and phase changes in Ni-In electrochemical systems /󠇡 A. V. Zvyagintseva /󠇡/󠇡 Scientific notes of V. I. Vernadsky Tauride National University. The series «Biology, chemistry». – 2013.– Tom 26 (65). – № 3. – Pp. 253-260.

20. . Taylor S. R. Abundance of chemical elements in the continental crust: a new table /󠇡/󠇡 Geochimica et Cosmochimica Acta. – 1964. – Vol. 28. – №. 8. – Pр. 12731285.

21. . Transparent and conductive ZnO:Al films deposited by large area reactive magnetron sputtering /󠇡 Szyszka B., Jiang X., Hong R. J., et al. /󠇡/󠇡 Thin Solid Films. – 2003. – V. 442. – Pр. 179-183.

22. . Zvyagintseva A. V. Physico-mechanical and corrosion-electromechanical properties of nickel coatings alloyed with indium /󠇡 A. V. Zvyagintseva, A. I. Falicheva /󠇡/󠇡 Electroplating and surface treatment. – M.: Publishing House of the Russian Chemical Technological University named after D. I. Mendeleev. – 1994. – Vol. 3. – No.5-6. – Рp. 52-54.

23. . Zharova Yu. A. Optical and structural properties of nanostructures /󠇡 Yu. A. Zharova, V. A. Tolmachev, S. I. Pavlov /󠇡/󠇡 Physics and Technology of semiconductors. – St. Petersburg: 2019. – Issue 3. – Рp. 576-582.

24. . Kolasinski K. W. In: Porous Silicon: From Formation to Application. Formation and Properties, ed. by G. Korotcenkov /󠇡 K. W. Kolasinski /󠇡/󠇡 London -N. Y. – Taylor and Francis Group, LLC. – 2016. – Vol. 1. – P. 291.

25. . Lazarev V. B. Chemical and physical properties of simple metal oxides /󠇡 V. B. Lazarev, V. V. Sobolev, I. S. Shaplygin. – M.: Nauka, 1983. – 239 p.

26. . Lysak G. V. Microwave synthesis of SnO2 nanocrystals on the surface of a thin-fiber polymer material /󠇡 G. V. Lysak, I. A. Lysak, T. D. Malinovskaya, G. G. Volokitin /󠇡/󠇡 Inorganic materials. – M.: 2010. – Vol. 46. – No. 2. – Pp. 223-226.

27. . Poshelyuzhnaya M. A. The size-controllable, one-step syntheis and characterization of gold nanoparticles protected by synthetic humic substances /󠇡 M. A. Poshelyuzhnaya, V. A. Litvin, R. L. Galagan, B. F. Minaev /󠇡/󠇡 Materials Chemistry and Physics. – 2014. – Р. 168-178.

28. . Bandarenka H. V. Handbook of Porous Silicon /󠇡 H. V. Bandarenka, ed. by L. Canham /󠇡/󠇡 Springer International Publishing AG, part of Springer Nature. – 2018. – P. 1315.

29. . Xie N. Enhanced sensing properties of SnO2 nanofibers with a novel structure by carbonization /󠇡 N. Xie, L. Guo /󠇡/󠇡 Phys. Rev. Lett. – 2018. – Vol. 271. – Pp. 44-53.

30. . Zhai J. Electron transport properties of antimony doped SnO2 single crystalline thin films grown by plasma-assisted molecular beam epitaxy /󠇡 J. Zhai, L. Wang, D. Wang /󠇡/󠇡 ACS Appl. Mater. Interfaces. – 2011. – Vol. 3. – Pр. 2253-2258.

31. . Liu X. Black silicon: fabrication methods, properties and solar energy applications /󠇡 X. Liu, P.R. Coxon, M. Peters, B. Hoex, J.M. Cole, D. J. Fray /󠇡/󠇡 Energy Environ. Sci. 2014. – Vol. 7. – № 10. – Pр. 3223-3263.

32. . Samsonov G. V. Physical and chemical properties of oxides /󠇡 G. V. Samsonov. - M.: Metallurgy, 1978. - 390 p.

33. . Analytical chemistry of vanadium /󠇡 V. N. Muzgin, L. B. Khamzina, V. L. Zolotavin, etc. – M.: Nauka, 1981. – 216 p.

34. . Dzhafarov T. Handbook of Porous Siliconеd. By Canham L., Bayramov A. /󠇡 T. Dzhafarov, A. Bayramov /󠇡/󠇡 Springer International Publishing AG, part of Springer Nature. – 2018. – P. 1479.

35. . Zvyagintseva A. Mathematical model of the process of controlling the hydrogen permeability of metals with internal stresses, taking into account the formation and distribution of fixed complexes /󠇡 A. V. Zvyagintseva /󠇡/󠇡 Proceedings of the Russian Academy of Sciences. The series is physical. – 2020. – Vol. 84. – No. 9. – Pр. 1097-1099.


Review

For citations:


Zvyagintseva A.V., Panteleev I.N., Dolzhenkov S.V. Study of optical properties of thin films of tin oxide. Alternative Energy and Ecology (ISJAEE). 2024;(10):213-225. (In Russ.) https://doi.org/10.15518/isjaee.2024.10.213-225

Views: 42


ISSN 1608-8298 (Print)