Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Натурные испытания солнечных модулей различной конструкции, предназначенных для энергоснабжения биогазовой установки

https://doi.org/10.15518/isjaee.2025.01.053-077

Аннотация

В статье представлены результаты натурных испытаний солнечных модулей фотоэлектрической, теплофотоэлектрической и тепловой конструкции, которые предназначены для компенсации энергетических затрат биогазовой установки. Описаны методика проведения натурных испытаний, используемое оборудование и инструменты, а также экспериментальный стенд для натурных испытаний солнечных модулей различной конструкции. На основе полученных результатов натурных испытаний солнечных модулей различной конструкции предложены направления для увеличения эффективности разработанных и изготовленных солнечных модулей, варианты совершенствования их конструкций, а также технологий изготовления. Также в статье приведены рекомендации по использованию солнечной установки на основе разработанных солнечных модулей различной конструкции и направления их дальнейших исследований.

Об авторах

В. А. Панченко
Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет транспорта»
Россия

Панченко Владимир Анатольвич -  кандидат технических наук, доцент, доцент кафедры; старший научный сотрудник лаборатории Федерального научного агроинженерного центра ВИМ 

127994, г. Москва, ул. Образцова, д. 9 

+79262752104 

Researcher ID: P-8127-2017
Scopus Author ID: 57201922860
Web of Science Researcher ID: AAE-1758-2019



А. А. Ковалёв
https://www.researchgate.net/profile/Andrey-Kovalev-8
Федеральный научный агроинженерный центр ВИМ
Россия

Ковалев Андрей Александрович -  главный научный сотрудник лаборатории биоэнергетических технологий, доктор технических наук 

109428, г. Москва, 1-й Институтский проезд, 5 

Researcher ID: F-7045-2017 

Scopus Author ID: 57205285134 



Ю. В. Литти
Институт микробиологии им. С. Н. Виноградского, Федеральный исследовательский центр «Фундаментальные основы биотехнологии» Российской академии наук
Россия

Литти Юрий Владимирович -  заведующий лабораторией микробиологии антропогенных мест  обитания, кандидат биологических наук 

119071, Москва, Ленинский пр-т, 33

Researcher ID: C-4945-2014

Scopus Author ID: 55251689800 



Список литературы

1. Michael Child, Otto Koskinen, Lassi Linnanen, Christian Breyer (2018). Sustainability guardrails for energy scenarios of the global energy transition // Renewable and Sustainable Energy Reviews, 91, 321-334. https://doi.org/10.1016/j.rser.2018.03.079.

2. Lowe R. J., Drummond P. (2022). Solar, wind and logistic substitution in global energy supply to 2050 – Barriers and implications // Renewable and Sustainable Energy Reviews, 153, 111720. https://doi.org/10.1016/j.rser.2021.111628.

3. Maestre V. M., Ortiz A., Ortiz I. (2021). Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications // Renewable and Sustainable Energy Reviews, 152, 111628. https://doi.org/10.1016/j.rser.2021.111628.

4. Meiling Yue, Hugo Lambert, Elodie Pahon, Robin Roche, Samir Jemei, Daniel Hissel (2021). Hydrogen energy systems: A critical review of technologies, applications, trends and challenges // Renewable and Sustainable Energy Reviews, 146, 111180. https://doi.org/10.1016/j.rser.2021.111180.

5. Arsad A. Z., Hannan M. A., Al-Shetwi Ali Q., Mansur M., Muttaqi K. M., Dong Z. Y., Blaabjerg F. (2022). Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions // International Journal of Hydrogen Energy, 47(39), 17285-17312. https://doi.org/10.1016/j.ijhydene.2022.03.208.

6. Torbjørn Egeland-Eriksen, Amin Hajizadeh, Sabrina Sartori (2021). Hydrogen-based systems for integration of renewable energy in power systems: Achievements and perspectives // International Journal of Hydrogen Energy, 46(63), 31963-31983. https://doi.org/10.1016/j.ijhydene.2021.06.218.

7. Marius Neuwirth, Tobias Fleiter, Pia Manz, René Hofmann (2022). The future potential hydrogen demand in energy-intensive industries - a site-specific approach applied to Germany // Energy Conversion and Management, 252, 115052. https://doi.org/10.1016/j.enconman.2021.115052.

8. Wenguo Liu, Haibin Zuo, Jingsong Wang, Qingguo Xue, Binglang Ren, Fan Yang (2021). The production and application of hydrogen in steel industry // International Journal of Hydrogen Energy, 46(17), 10548-10569. https://doi.org/10.1016/j.ijhydene.2020.12.123.

9. Oliver Posdziech, Konstantin Schwarze, Jörg Brabandt (2019). Efficient hydrogen production for industry and electricity storage via high-temperature electrolysis // International Journal of Hydrogen Energy, 44(35), 19089-19101. https://doi.org/10.1016/j.ijhydene.2018.05.169.

10. Chonnawee Likkasit, Azadeh Maroufmashat, Ali Elkamel, Hong-ming Ku, Michael Fowler (2018). Solar-aided hydrogen production methods for the integration of renewable energies into oil & gas industries // Energy Conversion and Management, 168, 395-406. https://doi.org/10.1016/j.enconman.2018.04.057.

11. Minli Yu, Ke Wang, Harrie Vredenburg (2021). Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen // International Journal of Hydrogen Energy, 46(41). https://doi.org/10.1016/j.ijhydene.2021.04.016.

12. Hermesmann M., Müller T. E. (2022). Green, Turquoise, Blue, or Grey? Environmentally friendly Hydrogen Production in Transforming Energy Systems // Progress in Energy and Combustion Science, 90, 100996. https://doi.org/10.1016/j.pecs.2022.100996.

13. Flora Biggins, Mohit Kataria, Diarmid Roberts, Dr Solomon Brown. Green hydrogen investments: Investigating the option to wait // Energy, 241, 122842. https://doi.org/10.1016/j.energy.2021.122842.

14. Ying Zhou, Ruiying Li, Zexuan Lv, Jian Liu, Hongjun Zhou, Chunming Xu (2022). Green hydrogen: A promising way to the carbon-free society // Chinese Journal of Chemical Engineering, 43, 2-13. https://doi.org/10.1016/j.cjche.2022.02.001.

15. Mostafa Rezaei, Malikeh Salimi, Mozhgan Momeni, Ali Mostafaeipour (2018). Investigation of the socio-economic feasibility of installing wind turbines to produce hydrogen: Case study // International Journal of Hydrogen Energy, 43(52), 23135-23147. https://doi.org/10.1016/j.ijhydene.2018.10.184.

16. Bahram Ghorbani, Sohrab Zendehboudi, Mostafa Moradi (2021). Development of an integrated structure of hydrogen and oxygen liquefaction cycle using wind turbines, Kalina power generation cycle, and electrolyzer // Energy, 221, 119653. https://doi.org/10.1016/j.energy.2020.119653.

17. Ahmad Sedaghat, Ali Mostafaeipour, Mostafa Rezaei, Mehdi Jahangiri, Amirreza Mehrabi (2020). A new semi-empirical wind turbine capacity factor for maximizing annual electricity and hydrogen production // International Journal of Hydrogen Energy, 45(32), 15888-15903. https://doi.org/10.1016/j.ijhydene.2020.04.028.

18. Hammou Tebibel (2021). Methodology for multi-objective optimization of wind turbine/battery/electrolyzer system for decentralized clean hydrogen production using an adapted power management strategy for low wind speed conditions // Energy Conversion and Management, 238, 114125. https://doi.org/10.1016/j.enconman.2021.114125.

19. Paolo GiuseppeMura, RobertoBaccoli, Roberto Innamorati, StefanoMariotti (2015). Solar Energy System in A Small Town Constituted of а Network of Photovoltaic Collectors to Produce Electricity for Homes and Hydrogen for Transport Services of Municipality // Energy Procedia, 78, 824-829. https://doi.org/10.1016/j.egypro.2015.11.002.

20. Panchenko V. A. (2018). Solar Roof Panels for Electric and Thermal Generation // Applied Solar Energy, 54(5), 350-353. doi.org/10.3103/S0003701X18050146. ISSN 0003-701X.

21. Vladimir Panchenko, Andrey Izmailov, Valeriy Kharchenko, Yakov Lobachevskiy (2020). Photovoltaic Solar Modules of Different Types and Designs for Energy Supply // International Journal of Energy Optimization and Engineering, 9(2), 74-94. DOI: 10.4018/IJEOE.2020040106.76

22. Piyali Chatterjee, Mounika Sai Krishna Ambati, Amit K. Chakraborty, Sabyasachi Chakrabortty, Sajal Biring, Seeram Ramakrishna, Terence Kin Shun Wong, Avishek Kumar, Raghavendra Lawaniya, Goutam Kumar Dalapati (2022). Photovoltaic/photo-electrocatalysis integration for green hydrogen: A review // Energy Conversion and Management, 261, 115648. https://doi.org/10.1016/j.enconman.2022.115648.

23. Lijun Wang, Chen Hong, Xiangyang Li, Zhenzhong Yang, Shuman Guo, Quancai Li (2022). Review on blended hydrogen-fuel internal combustion engines: A case study for China // Energy Reports, 8, 6480-6498. https://doi.org/10.1016/j.egyr.2022.04.079.

24. Rafig Babayev, Hong G. Im, Arne Andersson, Bengt Johansson (2022). Hydrogen double compression-expansion engine (H2DCEE): A sustainable internal combustion engine with 60% + brake thermal efficiency potential at 45 bar BMEP // Energy Conversion and Management, 264, 115698. https://doi.org/10.1016/j.enconman.2022.115698.

25. Norhidayah Mat Taib, Mohd Radzi AbuMansor, Wan Mohd Faizal Wan Mahmood (2021). Combustion characteristics of hydrogen in a noble gas compression ignition engine // Energy Reports, 7, 200-218. https://doi.org/10.1016/j.egyr.2021.07.133.

26. Balu Jalindar, Shinde, Karunamurthy K. (2022). Recent progress in hydrogen fuelled internal combustion engine (H2ICE) – A comprehensive outlook // Materials today: Proceedings, 51(3), 1568-1579. https://doi.org/10.1016/j.matpr.2021.10.378.

27. Changeun Park, Sesil Lim, Jungwoo Shin, Chul-Yong Lee (2022). How much hydrogen should be supplied in the transportation market? Focusing on hydrogen fuel cell vehicle demand in South Korea: Hydrogen demand and fuel cell vehicles in South Korea // Technological Forecasting and Social Change, 181, 121750. https://doi.org/10.1016/j.techfore.2022.121750.

28. Leonard E. Klebanoff, Sean A. M. Caughlan, Robert T. Madsen, Cody J. Conard, Timothy S. Leach, T. Bruce Appelgate Jr. (2021). Comparative study of a hybrid research vessel utilizing batteries or hydrogen fuel cells // International Journal of Hydrogen Energy, 46(76), 38051-38072. https://doi.org/10.1016/j.ijhydene.2021.09.047.

29. Sebastian Nicolay, Stanislav Karpuk, Yaolong Liu, Ali Elhama (2021). Conceptual design and optimization of a general aviation aircraft with fuel cells and hydrogen // International Journal of Hydrogen Energy, 46(64), 32676-32694. https://doi.org/10.1016/j.ijhydene.2021.07.127.

30. Seyed Ehsan Hosseini (2022). Hydrogen and Fuel Cells in Transport Road, Rail, Air, and Sea // Comprehensive Renewable Energy (Second Edition), 4, 317-342. https://doi.org/10.1016/B978-0-12-819727-1.00005-4.

31. Minnan Ye, Phil Sharp, Nigel Brandon, Anthony Kucernak (2022). System-level comparison of ammonia, compressed and liquid hydrogen as fuels for polymer electrolyte fuel cell powered shipping // International Journal of Hydrogen Energy, 47(13), 8565-8584. https://doi.org/10.1016/j.ijhydene.2021.12.164.

32. Lei Zheng, Shikun Cheng, Yanzhao Han, Min Wang, Yue Xiang, Jiali Guo, Di Cai, Heinz-Peter Mang, Taili Dong, Zifu Li, Zhengxu Yan, Yu Men (2020). Bio-natural gas industry in China: Current status and development // Renewable and Sustainable Energy Reviews, 128, 109925. https://doi.org/10.1016/j.rser.2020.109925.

33. Hailin Tian, Xiaonan Wang, Ee Yang Lim, Jonathan T. E. Lee, Alvin W. L. Ee, Jingxin Zhang, Yen Wah Tong (2021). Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization // Renewable and Sustainable Energy Reviews, 150, 111489. https://doi.org/10.1016/j.rser.2021.111489.

34. Marius Neuwirth, Tobias Fleiter, Pia Manz, René Hofmann (2022). The future potential hydrogen demand in energy-intensive industries – a site-specific approach applied to Germany // Energy Conversion and Management, 252, 115052. https://doi.org/10.1016/j.enconman.2021.115052.

35. Wenguo Liu, Haibin Zuo, Jingsong Wang, Qingguo Xue, Binglang Ren, Fan Yang (2021). The production and application of hydrogen in steel industry // International Journal of Hydrogen Energy, 46(17), 10548- 10569. https://doi.org/10.1016/j.ijhydene.2020.12.123.

36. Oliver Posdziech, Konstantin Schwarze, Jörg Brabandt (2019). Efficient hydrogen production for industry and electricity storage via high-temperature electrolysis // International Journal of Hydrogen Energy, 44(35), 19089-19101. https://doi.org/10.1016/j.ijhydene.2018.05.169.

37. Chonnawee Likkasit, Azadeh Maroufmashat, Ali Elkamel, Hong-ming Ku, Michael Fowler (2018). Solar-aided hydrogen production methods for the integration of renewable energies into oil & gas industries // Energy Conversion and Management, 168, 395-406. https://doi.org/10.1016/j.enconman.2018.04.057.

38. Md. M. Rahman, Mohammad Mahmodul Hasan, Jukka V. Paatero, Risto Lahdelma (2014). Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries // Renewable Energy, 68, 35-45. https://doi.org/10.1016/j.renene.2014.01.030.

39. Md. Yeamin Ali, Mehadi Hassan, Md. Atiqur Rahman, Abdulla-AI Kafy, Iffat Ara, Akib Javed, Md. Redwanur Rahman (2019). Life cycle energy and cost analysis of small scale biogas plant and solar PV system in rural areas of Bangladesh // Energy Procedia, V. 160, 277-284. https://doi.org/10.1016/j.egypro.2019.02.147.

40. Md. Mizanur Rahman, Mohammad Mahmodul Hasan, Jukka V. Paatero, Risto Lahdelma (2014). Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries // Renewable Energy, V. 68, 35-45. https://doi.org/10.1016/j.renene.2014.01.030.

41. Muhammad Tamoor, M. Suleman Tahir, Muhammad Sagir, Muhammad Bilal Tahir, Shahid Iqbal, Tasmia Nawaz (2020). Design of 3 kW integrated power generation system from solar and biogas // International Journal of Hydrogen Energy, V. 45, I. 23, 12711-12720. https://doi.org/10.1016/j.ijhydene.2020.02.207.

42. Wiesław Gazda, Wojciech Stanek (2016). Energy and environmental assessment of integrated biogastrigeneration and photovoltaic plant as more sustainable industrial system // Applied Energy, V. 169, 138-149. https://doi.org/10.1016/j.apenergy.2016.02.037.

43. P. Axaopoulos, P. Panagakis, A. Tsavdaris, D. Georgakakis (2001). Simulation and experimental performance of a solar-heated anaerobic digester // Solar Energy, V. 70, I. 2, 155-164. https://doi.org/10.1016/S0038-092X(00)00130-4.

44. Hamed M. El-Mashad, Wilko K. P. van Loon, Grietje Zeeman, Gerard P. A. Bot, Gatze Lettinga (2004). Design of A Solar Thermophilic Anaerobic Reactor for Small Farms // Biosystems Engineering, V. 87, I. 3, 345-353. https://doi.org/10.1016/j.biosystemseng.2003.11.013.

45. Badr Ouhammou, Aggour Mohammed, Smouh Sliman, Abdelmajid Jamil, Bakraoui Mohammed, Fadoua Karouach, Hassan El Bari, Tarik Kousksou (2022). Experimental conception and thermo-energetic analysis of a solar biogas production system // Case Studies in Thermal Engineering, V. 30, 101740. https://doi.org/10.1016/j.csite.2021.101740.

46. M. R. Darwesh, M.S. Ghoname (2021). Experimental studies on the contribution of solar energy as a source for heating biogas digestion units // Energy Reports, V. 7, 1657-1671. https://doi.org/10.1016/j.egyr.2021.03.014.

47. B. Ouhammou, M. Naciri, M. Aggour, M. Bakraoui, F. Karouach, H. ElBari (2017). Design and Analysis of Integrating the Solar Thermal energy in Anaerobic Digester using TRNSYS: Application kenitra-Morocco // Energy Procedia, V. 141, 13-17. https://doi.org/10.1016/j.egypro.2017.11.004.

48. Rong Feng, Jinping Li, Ti Dong, Xiuzhen Li (2016). Performance of a novel household solar heating thermostatic biogas system // Applied Thermal Engineering, V. 96, 519-526. https://doi.org/10.1016/j.applthermaleng.2015.12.003.

49. Yong Lu, Ye Tian, Haowei Lu, Lei Wu, Xianlin Li (2015). Study of solar heated biogas fermentation system with a phase change thermal storage device // Applied Thermal Engineering, V. 88, 418-424. https://doi.org/10.1016/j.applthermaleng.2014.12.065.

50. Jinping Li, Shirong Jin, Dandan Wan, Hui Li, Shuyuan Gong, Vojislav Novakovic (2022). Feasibility of annual dry anaerobic digestion temperature-controlled by solar energy in cold and arid areas // Journal of Environmental Management, V. 318, 115626. https://doi.org/10.1016/j.jenvman.2022.115626.

51. Yuan Zhong, Mauricio Bustamante Roman, Yingkui Zhong, Steve Archer, Rui Chen, Lauren Deitz, Dave Hochhalter, Katie Balaze, Miranda Sperry, Eric Werner, Dana Kirk, Wei Liao (2015). Using anaerobic digestion of organic wastes to biochemically store solar thermal energy // Energy, V. 83, 638-646. https://doi.org/10.1016/j.energy.2015.02.070.

52. Eid S. Gaballah, Tarek Kh Abdelkader, Shuai Luo, Qiaoxia Yuan, Abd El-Fatah Abomohra (2020). Enhancement of biogas production by integrated solar heating system: A pilot study using tubular digester // Energy, V. 193, 116758. https://doi.org/10.1016/j.energy.2019.116758.

53. Vikram P. Rathod, Jotiprasad Shete, Purnanand V. Bhale (2016). Experimental investigation on biogas reforming to hydrogen rich syngas production using solar energy // International Journal of Hydrogen Energy, V. 41, I. 1, 132-138. https://doi.org/10.1016/j.ijhydene.2015.09.158.

54. Bosheng Su, Wei Han, Hongguang Jin (2017). Proposal and assessment of a novel integrated CCHP system with biogas steam reforming using solar energy // Applied Energy, V. 206, 1-11. https://doi.org/10.1016/j.apenergy.2017.08.028.

55. Bosheng Su, Wei Han, Xiaosong Zhang, Yi Chen, Zefeng Wang, Hongguang Jin (2018) Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy // Applied Energy, V. 229, 922-935. https://doi.org/10.1016/j.apenergy.2018.08.037.

56. A. S. Mehr, M. Gandiglio, M. Mosaye Nezhad, A. Lanzini, S. M. S. Mahmoudi, M. Yari, M. Santarelli (2017). Solar-assisted integrated biogas solid oxide fuel cell (SOFC) installation in wastewater treatment plant: Energy and economic analysis // Applied Energy, V. 191, 620-638. https://doi.org/10.1016/j.apenergy.2017.01.070.

57. G. Zhang, Y. Li, Y. J. Dai, R. Z. Wang (2016). Design and analysis of a biogas production system utilizing residual energy for a hybrid CSP and biogas power plant // Applied Thermal Engineering, V. 109, Part A, 423-431. https://doi.org/10.1016/j.applthermaleng.2016.08.092.

58. Chun-YuLai, Linjie Zhou, Zhiguo Yuan, Jianhua Guo (2021). Hydrogen-driven microbial biogas upgrading: Advances, challenges and solutions // Water Research, V. 197, 117120. https://doi.org/10.1016/j.watres.2021.117120.

59. Irini Angelidaki, Laura Treu, Panagiotis Tsapekos, Gang Luo, Stefano Campanaro, Henrik Wenzel, Panagiotis G. Kougias (2018). Biogas upgrading and utilization: Current status and perspectives // Biotechnology Advances, V. 36, I. 2, 452-466. https://doi.org/10.1016/j.biotechadv.2018.01.011.

60. Diego Curto, Mariano Martín (2019). Renewable based biogas upgrading // Journal of Cleaner Production, V. 224, 50-59. https://doi.org/10.1016/j.jclepro.2019.03.176.

61. Shanfei Fu, Irini Angelidaki, Yifeng Zhang (2021). In situ Biogas Upgrading by CO2-to-CH4 Bioconversion // Trends in Biotechnology, V. 39, I. 4, 336-347. https://doi.org/10.1016/j.tibtech.2020.08.006.

62. Panchenko V. A., Daus Yu. V., Kovalev A. A., Litty Yu. V., Katraeva I. V. Modeling the energy supply of a biogas plant based on solar modules of various designs // International Journal of Hydrogen Energy, Volume 51, Part D, 2023, 119-129. https://doi.org/10.1016/j.ijhydene.2023.09.320.

63. Panchenko V. A., Chirsky S. P., Kovalev A. A., Litti Yu. V., Karaeva Y. V., Katraeva I. V. Modeling and manufacturing of solar modules of different designs for energy supply of biogas plant // International Journal of Hydrogen Energy, Volume 84, 2024, 177-191. https://doi.org/10.1016/j.ijhydene.2024.08.125.


Рецензия

Для цитирования:


Панченко В.А., Ковалёв А.А., Литти Ю.В. Натурные испытания солнечных модулей различной конструкции, предназначенных для энергоснабжения биогазовой установки. Альтернативная энергетика и экология (ISJAEE). 2025;(1):53-77. https://doi.org/10.15518/isjaee.2025.01.053-077

For citation:


Panchenko V.A., Kovalev A.A., Litti Yu.V. Field testing of solar modules of various designs intended for power supply of the biogas plant. Alternative Energy and Ecology (ISJAEE). 2025;(1):53-77. (In Russ.) https://doi.org/10.15518/isjaee.2025.01.053-077

Просмотров: 172


ISSN 1608-8298 (Print)