Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Развитие водородных заправочных станций: инновации и улучшения в контексте мировых трендов

https://doi.org/10.15518/isjaee.2025.01.173-185

Аннотация

В статье рассматриваются актуальные вопросы  развития водородной заправочной инфраструктуры как ключевого элемента продвижения экологически чистого транспорта. Проведен обзор современных исследований и подходов к созданию и оптимизации водородных заправочных станций (Hydrogen Refueling Station, HRS), включая методы доставки и хранения водородного топлива.  Анализируется текущая ситуация с количеством и распространением HRS в разных странах мира, а также выявляются основные препятствия, такие как
безопасность, стоимость производства,  транспортировки и хранения водорода.  Проанализированы различные конфигурации и технологические решения, направленные на  усовершенствование систем водородных станций, которые могут способствовать ускорению  внедрения водородной инфраструктуры. Результаты исследования подчеркивают важность дальнейшего развития этой сферы для сокращения выбросов углерода и перехода к более устойчивым  источникам энергии.
 

Об авторах

В. А. Гаврилов
Казанский государственный энергетический университет
Россия

Гаврилов Вадим Александрович - кандидат технических наук, доцент кафедры «Электроснабжение промышленных предприятий»,  заведующий научно-исследовательской  лабораторией «Возобновляемые источники энергии и энергетические сооружения»

 420066, Россия, г. Казань, ул. Красносельская, 51 

 (843) 519-42-73 



А. В. Леонтьев
Казанский государственный энергетический университет
Россия

Леонтьев Александр Васильевич -  доктор педагогических наук, профессор, первый проректор – проректор по учебной работе 

420066, Россия, г. Казань, ул. Красносельская, 51 



Р. И. Разакова
Казанский государственный энергетический университет
Россия

Разакова Регина Иршатовна -  старший преподаватель кафедры «Химия и водородная энергетика» 

420066, Россия, г. Казань, ул. Красносельская, 51 



А. С. Цой
Казанский государственный энергетический университет
Россия

Цой Александр Станиславович -  младший научный
сотрудник научно-исследовательской лаборатории «Возобновляемые источники энергии и энергетические сооружения» 

 420066, Россия, г. Казань, ул. Красносельская, 51 



Список литературы

1. Edwards R. L., Font-Palma C., Howe J. The status of hydrogen technologies in the UK: A multi-disciplinary review // Sustainable Energy Technologies and Assessments. – 2021. – V. 43. – P. 100901.

2. Bai Y. et al. Modeling and optimal control of fast filling process of hydrogen to fuel cell vehicle // Journal of Energy Storage. – 2021. – V. 35. – P. 102306.

3. Guo Q. et al. RETRACTED: Risk-based design of hydrogen storage-based charging station for hydrogen and electric vehicles using downside risk constraint approach. – 2022.

4. Council H. Path to hydrogen competitiveness: a cost perspective. – 2020.

5. Acar C., Dincer I. The potential role of hydrogen as a sustainable transportation fuel to combat global warming // International Journal of Hydrogen Energy. – 2020. – V. 45. – №. 5. – Pp. 3396-3406.

6. Genovese M., Fragiacomo P. Hydrogen refueling station: Overview of the technological status and research enhancement // Journal of Energy Storage. – 2023. – V. 61. – P. 106758.

7. Briguglio N. et al. New simulation tool helping a feasibility study for renewable hydrogen bus fleet in Messina // International Journal of hydrogen energy. – 2008. – V. 33. – №. 12. – Pp. 3077-3084.

8. Bourgeois T. et al. Optimization of hydrogen vehicle refuelling requirements // International Journal of Hydrogen Energy. – 2017. – V. 42. – №. 19. – Pp. 13789-13809.

9. Ahmadi S., Bathaee S. M. T., Hosseinpour A. H. Improving fuel economy and performance of a fuel-cell hybrid electric vehicle (fuel-cell, battery, and ultra-capacitor) using optimized energy management strategy // Energy Conversion and Management. – 2018. – V. 160. – Pp. 74-84.

10. Robledo C. B. et al. Fuel cell electric vehicle-to-grid feasibility: a technical analysis of aggregated units offering frequency reserves // Intelligent Integrated Energy Systems: The Power Web Program at TU Delft. – 2019. – Pp. 167-194.

11. Boudries R. Comparative economic competitiveness assessment of hydrogen as a fuel in the transport sector in Algeria // Chemical Engineering Transactions. – 2014. – V. 42. – Pp. 61-66.

12. Moriarty P., Honnery D. Prospects for hydrogen as a transport fuel // International Journal of Hydrogen Energy. – 2019. – V. 44. – №. 31. – Pp. 16029-16037.

13. Burkhardt J. et al. Hydrogen mobility from wind energy – a life cycle assessment focusing on the fuel supply // Applied energy. – 2016. – V. 181. – Pp. 54-64.

14. Genovese M., Fragiacomo P. Hydrogen refueling station: Overview of the technological status and research enhancement // Journal of Energy Storage. – 2023. – V. 61. – P. 106758.

15. Matute G., Yusta J. M., Correas L. C. Techno-economic modelling of water electrolysers in the range of several MW to provide grid services while generating hydrogen for different applications: a case study in Spain applied to mobility with FCEVs // International Journal of Hydrogen Energy. – 2019. – V. 44. – №. 33. – Pp. 17431-17442.

16. Kolbe K. Mitigating urban heat island effect and carbon dioxide emissions through different mobility concepts: Comparison of conventional vehicles with electric vehicles, hydrogen vehicles and public transportation // Transport Policy. – 2019. – V. 80. – Pp. 1-11.

17. Sinigaglia T. et al. Production, storage, fuel stations of hydrogen and its utilization in automotive applications-a review // International Journal of Hydrogen Energy. – 2017. – V. 42. – №. 39. – Pp. 24597-24611.

18. Farahani S. S. et al. Hydrogen-based integrated energy and mobility system for a real-life office environment // Applied Energy. – 2020. – V. 264. – P. 114695.

19. Nazir H. et al. Is the H2 economy realizable in the foreseeable future? Part III: H 2 usage technologies, applications, and challenges and opportunities // International Journal of Hydrogen Energy. – 2020. – V. 45. – №. 53. – Pp. 28217-28239.

20. Lahnaoui A. et al. Optimizing hydrogen transportation system for mobility via compressed hydrogen trucks // International Journal of Hydrogen Energy. – 2019. – V. 44. – №. 35. – Pp. 19302-19312.

21. Kwasie M. et al. Hydrogen Fuel Cell Vehicle Infrastructure: Analyzing Barriers to Investment and Entry to Support Stakeholder Collaboration // Sustainability Lab. – 2015. – Pp. 1-15.

22. Wang J. Barriers of scaling-up fuel cells: Cost, durability and reliability // Energy. – 2015. – V. 80. – Pp. 509-521.

23. Xu C., Wu Y., Dai S. What are the critical barriers to the development of hydrogen refueling stations in China? A modified fuzzy DEMATEL approach // Energy Policy. – 2020. – V. 142. – P. 111495.

24. Genovese M. et al. Multi-year energy performance data for an electrolysis-based hydrogen refueling station // International Journal of Hydrogen Energy. – 2024. – V. 52. – Pp. 688-704.

25. Pagliaro M. et al. Hydrogen refueling stations: safety and sustainability // Gen. Chem. – 2020. – V. 6. – P. 190029.

26. Depcik C. et al. Comparison of lithium ion Batteries, hydrogen fueled combustion Engines, and a hydrogen fuel cell in powering a small Unmanned Aerial Vehicle // Energy conversion and management. – 2020. – V. 207. – P. 112514.

27. He F. et al. Comparison study and synthetic evaluation of combined injection in a spark ignition engine with hydrogen-blended at lean burn condition // Energy. – 2018. – V. 157. – Pp. 1053-1062.

28. Viesi D., Crema L., Testi M. The Italian hydrogen mobility scenario implementing the European directive on alternative fuels infrastructure (DAFI 2014/94/EU) // International Journal of Hydrogen Energy. – 2017. – V. 42. – №. 44. – Pp. 27354-27373.

29. Zhang W., Maleki A., Nazari M. A. Optimal operation of a hydrogen station using multi-source renewable energy (solar/wind) by a new approach // Journal of Energy Storage. – 2022. – V. 53. – P. 104983.

30. Демидионов М. Ю. Пространственное моделирование потенциала развития альтернативной энергетики на примере острова Сахалин // Тихоокеанская география. –2023. –№ 4. –С. 82-92. https://doi.org/10.35735/26870509_2023_16_8. EDN: PDZYFQ.

31. Samsun R. C. et al. Deployment of fuel cell vehicles and hydrogen refueling station infrastructure: a global overview and perspectives // Energies. – 2022. – V. 15. – №. 14. – P. 4975.

32. IEA. Hydrogen and Fuel Cells. – OECD Publishing, 2015.

33. Grüger F. et al. Carsharing with fuel cell vehicles: Sizing hydrogen refueling stations based on refueling behavior // Applied energy. – 2018. – V. 228. – Pp. 1540-1549.

34. Undertaking H. J. Hydrogen roadmap Europe: a sustainable pathway for the European energy transition. – 2019.

35. Hassan Q. et al. Hydrogen fuel cell vehicles: Opportunities and challenges // Sustainability. – 2023. – V. 15. – №. 15. – P. 11501.

36. Samsun R. C., Antoni L., Rex M. Mobile fuel cell application: tracking market trends // IEA technology collaboration programme advanced cell. – 2020.

37. Samsun R. C. et al. Deployment status of fuel cells in road transport: 2021 update. – Elektrochemische Verfahrenstechnik, 2021. – №. FZJ-2021-03033.

38. H2Stations.org. Hydrogen Refueling Stations Overview [Электронный ресурс]. – 2024. – Режим доступа: https://www.h2stations.org/ (дата обращения: 20.10.2024). – Текст: электронный.

39. U. S. Department of Energy – Energy Efficiency and Renewable Energy. Alternative Fueling Station Counts by State [Электронный ресурс] // Alternative Fuels Data Center. – Режим доступа: https://afdc.energy.gov/stations/states (дата обращения: 03.01.2022). – Текст: электронный.

40. International Energy Agency (IEA). Global EV Outlook 2023: Catching Up with Climate Ambitions [Электронный ресурс]. – International Energy Agency, 2023. – Режим доступа: https://www.iea.org/reports/global-ev-outlook-2023 (дата обращения: 10.09.2024). – Текст: электронный.

41. Lohse-Busch, H., Stutenberg, K., Duoba, M., Iliev, S. Technology Assessment of a Fuel Cell Vehicle: 2017 Toyota Mirai (No. ANL/ESD-18/12). – Argonne National Laboratory (ANL), Argonne, IL, USA, 2018. – [Электронный ресурс]. – Режим доступа: Google Scholar (дата обращения: 10.09.2024).

42. Sery J., Leduc P. Fuel cell behavior and energy balance on board a Hyundai Nexo // International Journal of Engine Research. – 2022. – V. 23. – №. 5. – Pp. 709-720.

43. BMW Group. BMW iX5 Hydrogen: A Vision for Sustainable Mobility [Электронный ресурс] // BMW Official Website. – 2023. – Режим доступа: https://www.bmwgroup.com/en/company/ix5-hydrogen.html (дата обращения: 21.10.2024).

44. Daimler AG. Mercedes-Benz GLC F-CELL: Innovative Hydrogen Technology [Электронный ресурс] // Daimler Global. – 2023. – Режим доступа: https://www.daimler.com/sustainability/glc-fcell.html (дата обращения: 21.10.2024).

45. НАМИ. Водородные проекты и разработки [Электронный ресурс]. – 2024. – Режим доступа: https://hydrogen.nami.ru/#slide2 (дата обращения: 21.10.2024).

46. КАМАЗ. Первый водоробус от КАМАЗ [Электронный ресурс]. – 2024. – Режим доступа: https://kamaz.ru/press/releases/pervyy_vodorobus_ot_kamaza/ (дата обращения: 21.10.2024)

47. Shi J. et al. Methodological improvements in the risk analysis of an urban hydrogen fueling station // Journal of Cleaner Production. – 2020. – V. 257. – P. 120545.

48. International Energy Agency (IEA). Global Hydrogen Review 2023. – Париж: IEA, 2023. – Режим доступа: https://www.iea.org/reports/global-hydrogen-review-2023 (дата обращения: 21.10.2024).

49. Dodds P. E., McDowall W. A review of hydrogen delivery technologies for energy system models // Uk Shec. – 2012. – P. 3-35.

50. Cheng T. P. The Power of Experience Hydrogen Delivery Infrastructure Options Analysis: Final Report [Электронный ресурс]. – Режим доступа: https://www.energy.gov/sites/prod/files/2014/03/f11/delivery_infrastructure_analysis.pdf (дата обращения: 21.10.2024).

51. Karasawa H. Cost evaluation for centralized hydrogen production // Progress in Nuclear Energy. – 2005. – V. 47. – №. 1-4. – Pp. 512-518.

52. Yang C., Ogden J. Determining the lowest-cost hydrogen delivery mode // International Journal of Hydrogen Energy. – 2007. – V. 32. – №. 2. – Pp. 268-286.

53. Demir M. E., Dincer I. Cost assessment and evaluation of various hydrogen delivery scenarios // International Journal of Hydrogen Energy. – 2018. – V. 43. – №. 22. – Pp. 10420-10430.

54. Yanxing Z. et al. Thermodynamics analysis of hydrogen storage based on compressed gaseous hydrogen, liquid hydrogen and cryo-compressed hydrogen // International Journal of Hydrogen Energy. – 2019. – V. 44. – №. 31. – Pp. 16833-16840.

55. Reddi K. et al. Challenges and opportunities of hydrogen delivery via pipeline, tube-trailer, LIQUID tanker and methanation-natural gas grid // Hydrogen science and engineering: materials, processes, systems and technology. – 2016. – Pp. 849-874.

56. Kimura S. et al. Preliminary feasibility study for on-site hydrogen station with distributed CO2 capture and storage system // Energy Procedia. – 2014. – V. 63. – Pp. 4575-4584.

57. Symes D. et al. Design for on-site hydrogen production for hydrogen fuel cell vehicle refueling station at University of Birmingham, UK // Energy Procedia. – 2012. – V. 29. – Pp. 606-615.

58. Cho S., Kim J. Multi-site and multi-period optimization model for strategic planning of a renewable hydrogen energy network from biomass waste and energy crops // Energy. – 2019. – V. 185. – Pp. 527-540.

59. Abdalla A. M. et al. Hydrogen production, storage, transportation and key challenges with applications: A review // Energy conversion and management. – 2018. – V. 165. – Pp. 602-627.

60. Zhou T., Francois B. Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system // International journal of hydrogen energy. – 2009. – V. 34. – №. 1. – Pp. 21-30.

61. Penev M., Zuboy J., Hunter C. Economic analysis of a high-pressure urban pipeline concept (HyLine) for delivering hydrogen to retail fueling stations // Transportation Research Part D: Transport and Environment. – 2019. – V. 77. – Pp. 92-105.

62. Miao B., Giordano L., Chan S. H. Long-distance renewable hydrogen transmission via cables and pipelines // International Journal of Hydrogen Energy. – 2021. – V. 46. – №. 36. – Pp. 18699-18718.

63. Reddi K. et al. Impact of hydrogen SAE J2601 fueling methods on fueling time of light-duty fuel cell electric vehicles // International Journal of Hydrogen Energy. – 2017. – V. 42. – №. 26. – Pp. 16675-16685.

64. Mathison S. et al. Field validation of the MC default fill hydrogen fueling protocol // SAE International Journal of Alternative Powertrains. – 2015. – V. 4. – №. 1. – Pp. 130-144.

65. Lowesmith B. J., Hankinson G., Chynoweth S. Safety issues of the liquefaction, storage and transportation of liquid hydrogen: An analysis of incidents and HAZIDS // International Journal of Hydrogen Energy. – 2014. – V. 39. – №. 35. – Pp. 20516-20521.

66. Makhloufi C., Kezibri N. Large-scale decomposition of green ammonia for pure hydrogen production // International Journal of Hydrogen Energy. – 2021. – V. 46. – №. 70. – Pp. 34777-34787.

67. Ishimoto Y. et al. Large-scale production and transport of hydrogen from Norway to Europe and Japan: Value chain analysis and comparison of liquid hydrogen and ammonia as energy carriers // International Journal of Hydrogen Energy. – 2020. – V. 45. – №. 58. – Pp. 32865-32883.

68. Teichmann D. et al. Transport and storage of hydrogen via liquid organic hydrogen carrier (LOHC) systems // Hydrogen Science and Engineering: Materials, Processes, Systems and Technology. – 2016. – Pp. 811-830.

69. Lee S. et al. Comparative energetic studies on liquid organic hydrogen carrier: A net energy analysis // Renewable and Sustainable Energy Reviews. – 2021. – V. 150. – P. 111447.

70. Dong Z. et al. A design methodology of largescale metal hydride reactor based on schematization for hydrogen storage // Journal of Energy Storage. – 2022. – V. 49. – P. 104047.

71. Afzal M., Sharma P. Design of a large-scale metal hydride, based hydrogen storage reactor: simulation and heat transfer optimization // International Journal of Hydrogen Energy. – 2018. – V. 43. – №. 29. – Pp. 13356-13372.

72. Moreno-Blanco J. et al. The cold high-pressure approach to hydrogen delivery // International Journal of Hydrogen Energy. – 2020. – V. 45. – №. 51. – Pp. 27369-27380.

73. de Miguel N. et al. The role of initial tank temperature on refuelling of on-board hydrogen tanks // International Journal of Hydrogen Energy. – 2016. – V. 41. – №. 20. – Pp. 8606-8615.


Рецензия

Для цитирования:


Гаврилов В.А., Леонтьев А.В., Разакова Р.И., Цой А.С. Развитие водородных заправочных станций: инновации и улучшения в контексте мировых трендов. Альтернативная энергетика и экология (ISJAEE). 2025;(1):173-185. https://doi.org/10.15518/isjaee.2025.01.173-185

For citation:


Gavrilov V.A., Leontiev A.V., Razakova R.I., Tsoy A.S. Development of hydrogen refueling stations: innovations and improvements in the context of global trends. Alternative Energy and Ecology (ISJAEE). 2025;(1):173-185. (In Russ.) https://doi.org/10.15518/isjaee.2025.01.173-185

Просмотров: 233


ISSN 1608-8298 (Print)