

Agrivoltaics and green hydrogen symbiosis of solar energy technologies for sustainable development of humanity
https://doi.org/10.15518/isjaee.2024.11.012-019
Abstract
The aim of the presented work, which was presented at the conference [1], is to review modern agrivoltaic systems, technologies for producing green hydrogen using solar energy and the possibilities of joint application of these systems.
About the Authors
V. A. PanchenkoRussian Federation
Panchenko Vladimir Anatolyevich, candidate of technical sciences, associate professor of the Department of the Russian University of Transport, senior researcher of the Laboratory
127994, Moscow, Obraztsova st., 9
Researcher ID: P-8127-2017,
Scopus Author ID: 57201922860,
Web of Science Researcher ID: AAE-1758-2019
A. A. Kovalev
Russian Federation
Kovalev Andrey Alexandrovich, senior researcher of the laboratory of bioenergy and supercritical technologies, candidate of technical sciences
109428, Moscow, 1st Institutskiy proezd, 5
Researcher ID: F-7045-2017,
Scopus Author ID: 57205285134
S. Chakraborty
India
Chakraborty Suprava, Associate Professor of Technology Information, Forecasting and Assessment Council
Vellore 632014, Tamil Nadu
Scopus Author ID: 56479859000
References
1. International Conference «Energy, Ecology, Climate 2024 – WCAEE-ICEEC-2024», Montenegro, Budva, 17-19 July 2024. Accessed: May 18, 2024. [Online]. Available: https://www.isjaee.com/jour/announcement/view/364.
2. Gilbert N. One-third of our greenhouse gas emissions come from agriculture. Nature, 2012. https://doi.org/10.1038/nature.2012.11708.
3. Platis D. P., Anagnostopoulos C. D., Tsaboula A. D., Menexes G. C., Kalburtji K. L., Mamolos A. P. Energy Analysis, and Carbon and Water Footprint for Environmentally Friendly Farming Practices in Agroecosystems and Agroforestry. Sustainability, 2019, 11(6), 1664. https://doi.org/10.3390/su11061664.
4. Jaiswal B., Agrawa, M. Carbon Footprints of Agriculture Sector. Carbon Footprints. Environmental Footprints and Eco-design of Products and Processes. 2020. https://doi.org/10.1007/978-981-13-7916-1_4.
5. Shahriyar Safat Dipta, Jean Schoenlaub, Md Habibur Rahaman, Ashraf Uddin. Estimating the potential for semitransparent organic solar cells in agrophotovoltaic greenhouses. Applied Energy. – 2022, Volume 328, 120208, https://doi.org/10.1016/j.apenergy.2022.120208.
6. Othmane Essahili, Mouad Ouafi, Omar Moudam. Recent progress in organic luminescent solar concentrators for agrivoltaics: Opportunities for rare-earth complexes // Solar Energy, 2022, Volume 245, 58-66. https://doi.org/10.1016/j.solener.2022.08.054.
7. Michael E. Loik, Sue A. Carter, Glenn Alers, Catherine E. Wade, David Shugar, Carley Corrado, Devin Jokerst, Carol Kitayama. Wavelength-Selective Solar Photovoltaic Systems: Powering Greenhouses for Plant Growth at the Food-Energy-Water Nexus. Earth’s Future. – 2017, Volume5, Issue10, 1044-1053. https://doi.org/10.1002/2016EF000531.
8. Reda Hassanien Emam Hassanien, Li Ming. Influences of greenhouse-integrated semi-transparent photovoltaics on microclimate and lettuce growth // International Journal of Agricultural and Biological Engineering. – 2017. – Vol. 10. – No. 6, 11-22. DOI: 10.25165/j.ijabe.20171006.3407.
9. Insolagrin. Dynamic Agrivoltaic Solution. Solar panels for Farmers. Accessed: May 18, 2024. [Online]. Available: https://insolight.ch/solution/.
10. Pietro Elia Campana, Bengt Stridh, Stefano Amaducci, Michele Colauzzi, Optimisation of vertically mounted agrivoltaic systems // Journal of Cleaner Production, 2021, Volume 325, 129091, https://doi.org/10.1016/j.jclepro.2021.129091.
11. Shiva Gorjian, Hossein Ebadi, Max Trommsdorff, H. Sharon, Matthias Demant, Stephan Schindele. The advent of modern solar-powered electric agricultural machinery: A solution for sustainable farm operations // Journal of Cleaner Production, 2021, Volume 292, 126030, https://doi.org/10.1016/j.jclepro.2021.126030.
12. Ecorobotix Generation 1. Accessed: May 18, 2024. [Online]. Available: https://agtecher.com/ru/product-ru/ecorobotixs-autonomous-weed-killer/
13. Mark Calleija. Implications of robotics and autonomous vehicles for the grains industry. Accessed: May 18, 2024. [Online]. Available: https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2018/02/implications-of-robotics-and-autonomous-vehicles
14. Resourses for the Future. Investment Tax Credits for Hydrogen Storage. Accessed: May 18, 2024. [Online]. Available: https://www.rff.org/publications/issue-briefs/investment-tax-credits-hydrogen-storage/.
15. Wood Mackenzie Power & Renewables (2019). «Green Hydrogen Production: Landscape, Projects and Costs». Accessed: May 18, 2024. [Online]. Available: https://www.woodmac.com/our-expertise/focus/transition/green-hydrogen-production-2019/.
16. Panchenko V., Izmailov A., Kharchenko V., Lobachevskiy Ya. (2020). Photovoltaic Solar Modules of Different Types and Designs for Energy Supply // International Journal of Energy Optimization and Engineering. – Volume 9, Issue 2, 74-94. DOI: 10.4018/IJEOE.2020040106.
17. Panchenko V. A., Daus Yu. V., Kovalev A. A., Litty Yu. V., Katraeva I. V. Modeling the energy supply of a biogas plant based on solar modules of various designs // International Journal of Hydrogen Energy. – Volume 51, Part D, 2023, 119-129. https://doi.org/10.1016/j.ijhydene.2023.09.320.
Review
For citations:
Panchenko V.A., Kovalev A.A., Chakraborty S. Agrivoltaics and green hydrogen symbiosis of solar energy technologies for sustainable development of humanity. Alternative Energy and Ecology (ISJAEE). 2024;(11):12-19. (In Russ.) https://doi.org/10.15518/isjaee.2024.11.012-019