Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Feasibility of successive hydrogen and methane production in a single-reactor configuration of batch anaerobic digestion by simultaneous stimulation of hydrogenase activity and direct interspecies electron transfer

https://doi.org/10.15518/isjaee.2022.06.033-049

Abstract

The growing energy needs of mankind lead to the need to search for and develop technologies for renewable energy sources. Along with this, the issue of disposal of a large amount of organic waste generated as a result of human activity remains relevant. Methods of biodegradation of wastes with simultaneous production of bio-fuels based on anaerobic digestion processes have become widespread. Recently, a process of direct interspecies electron transfer (DIET) between syntrophic bacteria and methanogenic archaea has been discovered, which does not depend on metabolic intermediates. It also became known that it is possible to stimulate the transfer of electrons between microorganisms using electrically conductive materials of an abiogenic nature, increasing the overall yield of biomethane. Previous studies have shown the possibility of increasing the efficiency of two-stage anaerobic digestion by adding various stimulating materials. In this work, we studied a model of two-stage anaerobic digestion with time-separated stages in one reactor due to the enrichment of the microbial community with the thermophilic hydrogen-producing bacterium Thermoanaerobacterium thermosaccharolyticum SP-H2. The medium was supplemented with 10 mg/L of ferrous sulfate (II) to stimulate hydrogen production, and 10 g/L of granular activated carbon (GAC) was added for activation of direct interspecies electron transfer (DIET). This work aimed to test the method of sequential production of hydrogen and methane in one reactor by simultaneously maintaining a low pH to reduce the activity of methanogens, and adding soluble iron (II) sulfate and GAC to activate hydrogenases and DIET, respectively. The experiment was carried out in sealed glass vials with a volume of 120 ml at a temperature of 55°C (thermophilic temperature regime). The thermophilic digested sewage sludge obtained from the Lyubertsy and Cherepovets treatment facilities (methanogenic) and the culture of anaerobic thermophilic bacterium T. thermosaccharolyticum SP-H2 (hydrogenogenic) were used as inoculums. The successive production of hydrogen and methane was observed in the batches that contained both GAC and ferrous sulfate (II). The efficiency of the process was estimated using the modified Gompertz equation. According to the data obtained by scanning electron microscopy, active biofouling was observed on the particles of granular activated carbon taken from the GAC-Fe vials, covering all cavities and protrusions of the surface. Syntrophic conversion of metabolite products along with positive effect of ferrous sulfate (II) on hydrogenase activity can be assumed based on the obtained data. Thus, the tested original strategy of sequential production of hydrogen and methane in one reactor due to the separation of stages in time is promising for further study and application, including with the use of a real substrate.

About the Authors

A. A. Laikova
Winogradsky Institute of Microbiology, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Science
Russian Federation

Alexandra A. Laikova

Leninskiy Pr-t, 33, 2, 119071, Moscow, tel.: (495) 954-52-83



A. A. Kovalev
Federal Scientific Agroengineering Center VIM
Russian Federation

Andrey A. Kovalev

ResearcherID: F-7045-2017

Scopus Author ID: 57205285134

1st Institutsky Proezd, 5, 109428, Moscow



D. A. Kovalev
Federal Scientific Agroengineering Center VIM
Russian Federation

Dmitry A. Kovalev

ResearcherID: K-4810-2015

1st Institutsky Proezd, 5, 109428, Moscow



E. A. Zhuravleva
Winogradsky Institute of Microbiology, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Science
Russian Federation

Elena A. Zhuravleva

Scopus Author ID: 57216346570

Leninskiy Pr-t, 33, 2, 119071, Moscow, tel.: (495) 954-52-83



S. V. Shekhurdina
Winogradsky Institute of Microbiology, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Science; Faculty of Biology, Lomonosov Moscow State University
Russian Federation

Svetlana V. Shekhurdina

Leninskiy Pr-t, 33, 2, 119071, Moscow, tel.: (495) 954-52-83

Leninskie Gory, 1 b. 12, 119234, Moscow



N. G. Loiko
Winogradsky Institute of Microbiology, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Science
Russian Federation

Loiko Nataliya

Scopus Author ID: 7006188688

Leninskiy Pr-t, 33, 2, 119071, Moscow, tel.: (495) 954-52-83



Yu. V. Litti
Winogradsky Institute of Microbiology, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Science
Russian Federation

Yuriy V. Litti

Leninskiy Pr-t, 33, 2, 119071, Moscow, tel.: (495) 954-52-83



References

1. . Ghimire A., Frunzo L., Pirozzi F., Trably E., Escudie R., Lens P. N., Esposito G. (2015). A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Applied Energy, 144, 73-95. https://doi.org/10.1016/j.apenergy.2015.01.045.

2. . Engineering ToolBox, (2003). Fuels – Higher and Lower Calorific Values. [Ehlektronnyi resurs] -URL: https://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html (data obrashcheniya 07.04.2022).

3. . Zhao Z., Li Y., Zhang Y., & Lovley D. R. (2020). Sparking anaerobic digestion: promoting direct interspecies electron transfer to enhance methane production. iScience 23: 10 https://doi.org/10.1126/science.11965261794. https://doi.org/10.1016/j.isci.2020.101794.

4. . Nozhevnikova A. N., Russkova Y. I., Litti Y. V., Parshina S. N., Zhuravleva E. A., Nikitina A. A. (2020). Syntrophy and interspecies electron transfer in methanogenic microbial communi-ties. Microbiology, 89(2), 129-147. https://doi.org/10.1134/S0026261720020101.

5. . Lubitz W., Ogata H., Rudiger O., Reijerse E. (2014). Hydrogenases. Chemical reviews, 114(8), 4081-4148. https://doi.org/10.1021/cr4005814.

6. . Cheng J., Li H., Ding L., Zhou J., Song W., Li Y. Y., Lin R. (2020). Improving hydrogen and methane co-generation in cascading dark fermentation and anaerobic digestion: the effect of magnetite nanopar-ticles on microbial electron transfer and syntrophism. Chemical Engineering Journal, 397, 125394. https://doi.org/10.1016/j.cej.2020.125394.

7. . Wang' J., Wan W. (2 009). Factors influencing fermentative hydrogen production: a review. International journal of hydrogen energy, 34(2), 799-811. https://doi.org/10.1016/j.ijhydene.2008.11.015.

8. . Mullai P., Yogeswari M. K., Sridevi K. J. B. T. (2013). Optimisation and enhancement of biohydrogen production using nickel nanoparticles–A novel approach. Bioresource technology, 141, 212-219. https://doi.org/10.1016/j.biortech.2013.03.082.

9. . Lin R., Cheng J., Ding L., Song W., Liu M., Zhou J., Cen K. (2016). Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes. Bioresource technology, 207, 213-219. https://doi.org/10.1016/j.biortech.2016.02.009.

10. . Taherdanak M., Zilouei H., Karimi K. (2016). The effects of Fe0 and Ni0 nanoparticles versus Fe2+ and Ni2+ ions on dark hydrogen fermentation. International Journal of Hydrogen Energy, 41(1), 167-173. http://dx.doi.org/10.1016/j.ijhydene.2015.11.110.

11. . Summers Z. M., Fogarty H. E., Leang C., Franks A. E., Malvankar N. S., Lovley D. R. (2010). Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science, 330(6009), 1413-1415. https://doi.org/10.1126/science.1196526.

12. . Ye J., Hu A., Ren G., Chen M., Tang J., Zhang P., He Z. (2018). Enhancing sludge methanogenesis with improved redox activity of extracellular polymeric substances by hematite in red mud. Water research, 134, 54-62. https://doi.org/10.1016/j.watres.2018.01.062.

13. . Lee J. Y., Lee S. H., Park H. D. (2016). Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors. Bioresource technology, 205, 205-212. https://doi.org/10.1016/j.biortech.2016.01.054.

14. . Zhang G., Shi Y., Zhao Z., Wang X., Dou M. (2020). Enhanced two-phase anaerobic digestion of waste-activated sludge by combining magnetite and zero-valent iron. Bioresource Technology, 306, 123122. https://doi.org/10.1016/j.biortech.2020.123122.

15. . Kovalev A. A., Kovalev D. A., Zhuravleva E. A., Katraeva I. V., Panchenko V., Fiore U., Litti Y. V. (2022). Two-stage anaerobic digestion with direct electric stimulation of methanogenesis: The effect of a physical barrier to retain biomass on the surface of a carbon cloth-based biocathode. Renewable Energy, 181, 966-977. https://doi.org/10.1016/j.renene.2021.09.097.

16. . Kovalev A. A., Kovalev D. A., Nozhevnikova A. N., Zhuravleva E. A., Katraeva I. V., Grigoriev V. S., Litti Y. V. (2021). Effect of low digestate recirculation ratio on biofuel and bioenergy recovery in a two-stage anaerobic digestion process. International Journal of Hydrogen Energy, 46(80), 39688-39699. https://doi.org/10.1016/j.ijhydene.2021.09.239.

17. . Kovalev A.A., Kovalev D.A., Litti Yu.V., Katraeva I.V., Nozhevnikova A.N. Influnce of the recirculation ratio of the methanogenic digester effluent on the dynamics of biohydrogen formation in a two-stage process of anaerobic bioconversion of liquid organic waste. Alternative Energy and Ecology (ISJAEE). 2021;(01-03):34-46. (In Russ.) https://doi.org/10.15518/isjaee.2021.01.003.

18. . Kovalev A.A., Kovalev D.A., Litti Yu.V., Katraeva I.V. Biohydrogen Production in the Two-Stage Process of Anaerobic Bioconversion of Organic Substance of Liquid Organic Waste with Recycle of Digister Effluent. Alternative Energy and Ecology (ISJAEE). 2020 ;( 7-18):87-100. (In Russ.) https://doi.org/10.15518/isjaee.2020.07-18.87-100.

19. . Sunyoto N. M., Zhu M., Zhang Z., Zhang D. (2016). Effect of biochar addition on hydrogen and me thane production in two-phase anaerobic digestion ofaqueous carbohydrates food waste. Bioresource technology, 219, 29-36. http://dx.doi.org/10.1016/j.biortech.2016.07.089.

20. . Park J. H., Kang H. J., Park K. H., Park H. D. (2018). Direct interspecies electron transfer via conductive materials: a perspective for anaerobic digestion applications. Bioresource technology, 254, 300-311. https://doi.org/10.1016/j.biortech.2018.01.095.

21. . Wainaina S., Lukitawesa Kumar Awasthi M., Taherzadeh M. J. (2019). Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: a critical review. Bioengineered, 10(1), 437-458. https://doi.org/10.1080/21655979.2019.1673937.

22. . Litti Y. V., Zhuravleva E. A., Kovalev A. A., Kovalev D. A., Katraeva I. V., Parshina S. N. (2021, December). Biohydrogen production from food processing wastewater by a newly isolated thermophilic bacterium. In IOP Conference Series: Earth and Environmental Science (Vol. 938, No. 1, p. 012017). IOP Publishing. https://doi.org/10.1088/1755-1315/938/1/012017.

23. . Wang M., Zhao Q., Li L., Niu K., Li Y., Wang F., ... & Fang X. (2016). Contributing factors in the improvement of cellulosic H2 production in Clostridium thermocellum/Thermoanaerobacterium co-cultures. Applied microbiology and biotechnology, 100(19), 8607-8620. https://doi.org/10.1007/s00253-016-7776-1.

24. . Yang H., Shen J. (2006). Effect of ferrous iron concentration on anaerobic bio-hydrogen production from soluble starch. International journal of hydrogen energy, 31(15), 2137-2146. https://doi.org/10.1016/j.ijhydene.2006.02.009.

25. . Dang Y., Holmes D. E., Zhao Z., Woodard T. L., Zhang Y., Sun D., ... & Lovley D. R. (2016). Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials. Bioresource technology, 220, 516-522. https://doi.org/10.1016/j.biortech.2016.08.114.

26. . Kovalev A. A., Kovalev D. A., Litti Y. V., & Katraeva I. V. (2020). Biohydrogen production in the two-stage process of anaerobic bioconversion of organic matter of liquid organic waste with recirculation of digister effluent. International Journal of Hydrogen Energy, 45(51), 26831-26839.

27. . Kovalev A.A., Kovalev D.A., Litti Yu.V., Katraeva I.V. Biohydrogen Production in the Two-Stage Process of Anaerobic Bioconversion of Organic Substance of Liquid Organic Waste with Recycle of Digister Effluent. Alternative Energy and Ecology (ISJAEE). 2020;(7-18):87-100. (In Russ.) https://doi.org/10.15518/isjaee.2020.07-18.87-100.

28. . Capson-Tojo G., Moscoviz R., Ruiz D., SantaCatalina G., Trably E., Rouez M., ... & Escudié R. (2018). Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste. Bioresource technol- gy, 260, 157-168. https://doi.org/10.1016/j.biortech.2018.03.097.

29. . Pfennig N 1965 Anreicherungskulturen fürote und grüne Schwefelbakterien Zbl. Bakt. I Abt. Orig. Suppl. 1 179⎯189.

30. . Demirel B., & Scherer P. (2008). The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Reviews in Environmental Science and Bio/Technology, 7(2), 173-190. https://doi.org/10.1007/s11157-008-9131-1.

31. . Zhuravleva E. A., Shekhurdina S. V., Kotova I. B., Loiko N. G., Popova N. M., Kryukov E., ... & Litti Y. Effects of Various Materials Used to Promote the Direct Interspecies Electron Transfer on Anaerobic Digestion of Low-Concentration Swine Manure. Available at SSRN 4062586. https://dx.doi.org/10.2139/ssrn.4062586.

32. . Litti YU. V., Kovalev D. A., Kovalev A. A., Katraeva I. V., Mikheeva EH. R., Nozhevnikova A. N. (2019). Ispol'zovanie apparata vikhrevogo sloya dlya povysheniya ehffektivnosti metanovogo sbrazhivaniya osadkov stochnykh vod. Vodosnabzhenie i sanitarnaya tekhnika, (11), 32-40. DOI: 10.35776/MNP.2019.11.05.

33. . Schnürer A. (2016). Biogas production: microbiology and technology. Anaerobes in biotechnology, 195-234. https://doi.org/10.1007/10_2016_5.

34. . Xiao L., Liu J., Kumar P. S., Zhou M., Yu J., & Lichtfouse E. (2022). Enhanced methane production by granular activated carbon: A review. Fuel, 320, 123903. https://doi.org/10.1016/j.fuel.2022.123903.

35. . Ryue J., Lin L., Liu Y., Lu W., McCartney D., & Dhar B. R. (2019). Comparative effects of GAC addition on methane productivity and microbial community in mesophilic and thermophilic anaerobic digestion of food waste. Biochemical Engineering Journal, 146, 79-87. https://doi.org/10.1016/j.bej.2019.03.010.


Review

For citations:


Laikova A.A., Kovalev A.A., Kovalev D.A., Zhuravleva E.A., Shekhurdina S.V., Loiko N.G., Litti Yu.V. Feasibility of successive hydrogen and methane production in a single-reactor configuration of batch anaerobic digestion by simultaneous stimulation of hydrogenase activity and direct interspecies electron transfer. Alternative Energy and Ecology (ISJAEE). 2022;(6):33-49. (In Russ.) https://doi.org/10.15518/isjaee.2022.06.033-049

Views: 29


ISSN 1608-8298 (Print)