

Experimental determination of the energy recovery of a two-stage process of mesophilic-thermophilic anaerobic digestion of cheese whey
https://doi.org/10.15518/isjaee.2022.06.050-065
Abstract
Among renewable energy sources, hydrogen and methane are gaseous fuels that have a higher energy density than petroleum-derived gasoline and diesel. In recent years, there has been increasing interest in converting existing anaerobic digestion systems to a two-stage process that results in the production of hydrogen in the first stage and then the production of methane in the second stage. In this study, an assessment was made of the energy yields of a two-stage process of mesophilic-thermophilic anaerobic fermentation of native cheese whey. Cheese whey was fed into a mesophilic acid reactor at three CODs of 6.8 g/l, 9.2 g/l and 13.8 g/l with a hydraulic retention time (HRT) of 10 hours. The acidogenic reactor effluent was then fed to three methanogenic reactors, which operated at different HRTs: 72, 48, and 24 hours. The working volumes of the reactors were 900 ml each. Polyurethane foam was used to immobilize the anaerobic acidogenic and methanogenic sludge. The heating value (HV) was determined according to the measurement method using a bomb calorimeter for modes with the highest methane content and with the highest hydrogen content, as well as a calculation method based on the content of combustible gases in biohythane. The obtained deviations of the calculated HV value of biohythane from the experimentally determined HV value (2.51–7.11%) could be due to the fact that the HV value of biohythane is probably not equal to the sum of the HV values of hydrogen and methane. While an increase in the hydrogen content in biohythane leads to a decrease in the deviation of the calculated and experimental HV values of biohythane. The maximum energy production rate (EPR) was 53.2 kJ/(l day) at a COD concentration in the influent of 13.8 g/l, a hydraulic retention time (HRT) in an acidogenic reactor of 10 h, and a HRT in a methanogenic reactor of 48 h. The maximum energy yield (EY) (14,42 kJ/g COD) was observed at a COD concentration in the influent of 9.2 g/l, HRT in an acidogenic reactor for 10 h and HRT in a methanogenic reactor for 72 h.
About the Authors
A. A. KovalevRussian Federation
Andrey A. Kovalev
ResearcherID: F-7045-2017
Scopus Author ID: 57205285134
1st Institutsky Proezd, 5, 109428, Moscow
E. R. Mikheeva
Russian Federation
Elza R Mikheeva
ResearcherID: L-8818-2016
603950 Nizhny Novgorod
I. V. Katraeva
Russian Federation
Inna V. Katraeva
ResearcherID: O-4715-2016
603950 Nizhny Novgorod
D. A. Kovalev
Russian Federation
Dmitry A. Kovalev
ResearcherID: K-4810-2015
1st Institutsky Proezd, 5, 109428
A. M. Kozlov
Russian Federation
Andrey M. Kozlov
119991, Moscow, Leninsky prospect, 65, building 1
Yu. V. Litti
Russian Federation
Yuriy V. Litti
Scopus Author ID: 55251689800
119071 Moscow
References
1. [1]. Lunprom, S.; Phanduang, O.; Salakkam, A.; Liao, Q.; Imai, T.; Reungsang, A. Bio-Hythane Production from Residual Biomass of Chlorella Sp. Biomass through a Two-Stage Anaerobic Digestion. International Journal of Hydrogen Energy 2019, 44 (6), 3339–3346. https://doi.org/https://doi.org/10.1016/j.ijhydene.2018.09.064.
2. [2]. Antonopoulou, G.; Gavala, H. N.; Skiadas, I. V; Angelopoulos, K.; Lyberatos, G. Biofuels Generation from Sweet Sorghum: Fermentative Hydrogen Production and Anaerobic Digestion of the Remaining Biomass. Bioresource Technology 2008, 99 (1), 110–119. https://doi.org/https://doi.org/10.1016/j.biortech.2006.11.048.
3. [3]. Roy, S.; Das, D. Biohythane Production from Organic Wastes: Present State of Art. Environmental Science and Pollution Research 2016, 23 (10), 9391– 9410. https://doi.org/10.1007/s11356-015-5469-4.
4. [4]. Ghimire, A.; Kumar, G.; Sivagurunathan, P.; Shobana, S.; Saratale, G. D.; Kim, H. W.; Luongo, V.; Esposito, G.; Munoz, R. Bio-Hythane Production from Microalgae Biomass: Key Challenges and Potential Opportunities for Algal Bio-Refineries. Bioresource Technology 2017, 241, 525–536. https://doi.org/https://doi.org/10.1016/j.biortech.2017.05.156.
5. [5]. Shaikin A.P., Galiev I.R. Effect of Chemical Hythane Composition on Pressure in Combustion Chamber of Engine. Alternative Energy and Ecology (ISJAEE). 2019;(10-12):36-42. (In Russ.) https://doi.org/10.15518/isjaee.2019.10-12.036-042.
6. [6]. Ivannikova E.M., Sister V.G., Chirkov V.G. Alternative fuels for internal combustion engines. Alternative Energy and Ecology (ISJAEE). 2014;(13):35–44. (In Russ.).
7. [7]. Brizitsky O.F., Terentyev V.Y., Barelko V.V., Kirillov V.A., Sobyanin V.A., Snytnikov P.V., Burtsev V.A., Bykov L.A., Kuznetsov M.V. ABOUT THE PROSPECTS OF ENGINE BUILDING TRANSFORMATION TO HYDROGEN-CONTAINING FUEL. Alternative Energy and Ecology (ISJAEE). 2014;(20):95-102. (In Russ.) https://doi.org/10.15518/isjaee.2014.20.008.
8. [8]. Stolyarevsky A.Ya. THE TECHNOLGY OF HYDROGEN-METHANE MIX PRODUCTION FOR A VEHICLES AND POWER INDUSTRY. Alternative Energy and Ecology (ISJAEE). 2009;5:8‒16.
9. [9]. Liu, Z.; Si, B.; Li, J.; He, J.; Zhang, C.; Lu, Y.; Zhang, Y.; Xing, X.-H. Bioprocess Engineering for Biohythane Production from Low-Grade Waste Biomass: Technical Challenges towards Scale Up. Current Opinion in Biotechnology 2018, 50, 25–31. https://doi.org/https://doi.org/10.1016/j.copbio.2017.08.014.
10. [10]. Dahiya, S.; Joseph, J. High Rate Biomethanation Technology for Solid Waste Management and Rapid Biogas Production: An Emphasis on Reactor Design Parameters. Bioresource Technology 2015, 188, 73–78. https://doi.org/https://doi.org/10.1016/j.biortech.2015.01.074.
11. [11]. Cavinato, C.; Bolzonella, D.; Fatone, F.; Cecchi, F.; Pavan, P. Optimization of Two-Phase Thermophilic Anaerobic Digestion of Biowaste for Hydrogen and Methane Production through Reject Water Recirculation. Bioresource Technology 2011, 102 (18), 8605– 8611. https://doi.org/https://doi.org/10.1016/j.biortech.2011.03.084.
12. [12]. Kumari, S.; Das, D. Biohythane Production from Sugarcane Bagasse and Water Hyacinth: A Way towards Promising Green Energy Production. Journal of Cleaner Production 2018, 207. https://doi.org/10.1016/j.jclepro.2018.10.050.
13. [13]. Bouallagui, H.; Touhami, Y.; Ben Cheikh, R.; Hamdi, M. Bioreactor Performance in Anaerobic Digestion of Fruit and Vegetable Wastes. Process Biochemistry 2005, 40 (3), 989–995. https://doi.org/10.1016/j.procbio.2004.03.007.
14. [14]. Tunçay, E. G.; Erguder, T. H.; Eroğlu, İ.; Gündüz, U. Dark Fermentative Hydrogen Production from Sucrose and Molasses. International Journal of Energy Research 2017, 41 (13), 1891–1902. https://doi.org/10.1002/er.3751.
15. [15]. Cheng, J.; Lin, R.; Ding, L.; Song, W.; Li, Y.; Zhou, J.; Cen, K. Fermentative Hydrogen and Methane Cogeneration from Cassava Residues: Effect of Pretreatment on Structural Characterization and Fermentation Performance. Bioresource Technology 2015, 179, 407–413. https://doi.org/https://doi.org/10.1016/j.biortech.2014.12.050.
16. [16]. Kumar, G.; Bakonyi, P.; Sivagurunathan, P.; Kim, S.-H.; Nemestóthy, N.; Bélafi-Bakó, K. Lignocellulose Biohydrogen: Practical Challenges and Recent Progress. Renewable and Sustainable Energy Reviews 2015, 44, 728–737. https://doi.org/10.1016/j.rser.2015.01.042.
17. [17]. Ghimire, A.; Luongo, V.; Frunzo, L.; Pirozzi, F.; Lens, P. N. L.; Esposito, G. Continuous Biohydrogen Production by Thermophilic Dark Fermentation of Cheese Whey: Use of Buffalo Manure as Buffering Agent. International Journal of Hydrogen Energy 2017, 42, 4861–4869.
18. [18]. Cota-Navarro, C. B.; Carrillo-Reyes, J.; Davila-Vazquez, G.; Alatriste-Mondragón, F.; Razo-Flores, E. Continuous Hydrogen and Methane Production in a Two-Stage Cheese Whey Fermentation System. Water Science and Technology 2011, 64 (2), 367–374. https://doi.org/10.2166/wst.2011.631.
19. [19]. Venetsaneas, N.; Antonopoulou, G.; Stamatelatou, K.; Kornaros, M.; Lyberatos, G. Using Cheese Whey for Hydrogen and Methane Generation in a Two-Stage Continuous Process with Alternative PH Controling Approaches. Bioresource Technology 2009, 100 (15), 3713–3717. https://doi.org/https://doi.org/10.1016/j.biortech.2009.01.025.
20. [20]. Ramos, L. R.; de Menezes, C. A.; Soares, L. A.; Sakamoto, I. K.; Varesche, M. B. A.; Silva, E. L. Controlling Methane and Hydrogen Production from Cheese Whey in an EGSB Reactor by Changing the HRT. Bioprocess and Biosystems Engineering 2020, 43 (4), 673– 684. https://doi.org/10.1007/s00449-019-02265-9.
21. [21]. Mikheeva, E. R.; Katraeva, I. V; Kovalev, A. A.; Kovalev, D. A.; Nozhevnikova, A. N.; Panchenko, V.; Fiore, U.; Litti, Y. V. The Start-Up of Continuous Biohydrogen Production from Cheese Whey: Comparison of Inoculum Pretreatment Methods and Reactors with Moving and Fixed Polyurethane Carriers. Applied Sciences 2021, 11 (2). https://doi.org/10.3390/app11020510.
22. [22]. Ta, D. T.; Lin, C.-Y.; Ta, T. M. N.; Chu, C.-Y. Biohythane Production via Single-Stage Anaerobic Fermentation Using Entrapped Hydrogenic and Methanogenic Bacteria. Bioresource Technology 2020, 300, 122702. https://doi.org/https://doi.org/10.1016/j.biortech.2019.122702.
23. [23]. Kovalev, A. A.; Kovalev, D. A.; Nozhevnikova, A. N.; Zhuravleva, E. A.; Katraeva, I. V; Grigoriev, V. S.; Litti, Y. V. Effect of Low Digestate Recirculation Ratio on Biofuel and Bioenergy Recovery in a Two-Stage Anaerobic Digestion Process. International Journal of Hydrogen Energy 2021, 46 (80), 39688–39699. https://doi.org/https://doi.org/10.1016/j.ijhydene.2021.09.239.
24. [24]. ISO 6976:1995 Natural gas — Calculation of calorific values, density, relative density and Wobbe index from composition.
25. [25]. Srisowmeya, G.; Chakravarthy, M.; Bakshi, A.; Nandhini Devi, G. Improving Process Stability, Biogas Production and Energy Recovery Using Two-Stage Mesophilic Anaerobic Codigestion of Rice Wastewater with Cow Dung Slurry. Biomass and Bioenergy 2021, 152, 106184. https://doi.org/https://doi.org/10.1016/j.biombioe.2021.106184.
26. [26]. Engineering ToolBox (https://www.engineeringtoolbox.com/).
27. [27]. Harrison, K. W.; Remick, R. J.; Hoskin, A. J.; Martin, G. Hydrogen Production: Fundamentals and Case Study Summaries; Preprint; 2010 (To be presented at the 18th World Hydrogen Energy Conference Essen, Germany May 16-21, 2010).
28. [28]. Sinha P., Gaurav K., Roy S., Balachandar G., Das D. Improvement of Biohydrogen Production with Novel Augmentation Strategy Using Different Organic Residues. Alternative Energy and Ecology (ISJAEE). 2019;(34-36):26-40. (In Russ.) https://doi.org/10.15518/isjaee.2019.34-36.026-040.
29. [29]. Das D., Veziroglu T.N. ADVANCES IN BIOLOGICAL HYDROGEN PRODUCTION PROCESSES. Alternative Energy and Ecology (ISJAEE). 2017;(22-24):83-98. (In Russ.) https://doi.org/10.15518/isjaee.2017.22-24.083-098.
30. [30]. Ali, M. M.; Mustafa, A. M.; Zhang, X.; Lin, H.; Zhang, X.; Abdulbaki Danhassan, U.; Zhou, X.; Sheng, K. Impacts of Molybdate and Ferric Chloride on Biohythane Production through Two-Stage Anaerobic Digestion of Sulfate-Rich Hydrolyzed Tofu Processing Residue. Bioresource Technology 2022, 355, 127239. https://doi.org/https://doi.org/10.1016/j.biortech.2022.127239.
31. [31]. Khongkliang, P.; Kongjan, P.; O-Thong, S. Hydrogen and Methane Production from Starch Processing Wastewater by Thermophilic Two-Stage Anaerobic Digestion. Energy Procedia 2015, 79, 827–832. https://doi.org/https://doi.org/10.1016/j.egypro.2015.11.573.
32. [32]. Kabir, S. Bin; Khalekuzzaman, M.; Hossain, N.; Jamal, M.; Alam, M. A.; Abomohra, A. E.-F. Progress in Biohythane Production from Microalgae-Wastewater Sludge Co-Digestion: An Integrated Biorefinery Approach. Biotechnology Advances 2022, 57, 107933. https://doi.org/https://doi.org/10.1016/j.biotechadv.2022.107933.
Review
For citations:
Kovalev A.A., Mikheeva E.R., Katraeva I.V., Kovalev D.A., Kozlov A.M., Litti Yu.V. Experimental determination of the energy recovery of a two-stage process of mesophilic-thermophilic anaerobic digestion of cheese whey. Alternative Energy and Ecology (ISJAEE). 2022;(6):50-65. (In Russ.) https://doi.org/10.15518/isjaee.2022.06.050-065