

Development and substantiation of a method for safe use of hydrogen in the event of overheating of the working fuel in the steam turbine cycle of nuclear power plants
https://doi.org/10.15518/isjaee.2024.12.048-094
Abstract
In the article, within the framework of solving the problem of providing NPPs with a base load due to combination with a hydrogen complex, a new principle of ensuring the safety of hydrogen use during overheating of the working fluid in the steam turbine cycle of NPPs is substantiated. For the first time, a system for removing unreacted hydrogen from the vapor phase of the working fluid of the steam turbine cycle of NPPs has been developed based on a catalytic hydrogen recombiner and magnetic separation with underground placement of the main equipment of the hydrogen complex. A detailed review is given on the experience of using catalytic recombiners in power engineering, as well as magnetic field technologies for gas separation and in obtaining hydrogen by water electrolysis, which proves the practical mastery of these technologies in the world. The principle of underground placement of the main equipment of the hydrogen complex is presented. A methodology for assessing the risk of fire and explosion of hydrogen when mixing with an oxidizer in the event of an emergency is given. Based on the developed system for removing unreacted hydrogen, new indicators have been obtained for reducing the likelihood of an explosion or fire when mixing hydrogen with an oxidizer. New results have been obtained for assessing the overall risk of explosion or fire when mixing hydrogen with an oxidizer in the event of an accident.
About the Authors
A. N. BairamovRussian Federation
Bairamov Artem Nicolaevich, Professor of the Department of Thermal and Nuclear Power Engineering
named after A. I. Andryushchenko; doctor of technical
science
410054, Saratov, st. Politekhnicheskaya, 77
+7(8452)56-91-95
Scopus Author ID: 35224451800
Research ID: P-6565-2017
D. A. Makarov
Russian Federation
Makarov Daniil Alekseevich, Research Laboratory Assistant
410054, Saratov, st. Politekhnicheskaya, 77
A. N. Mrakin
Russian Federation
Mrakin Anton Nikolaevich, associate professor of
the Department: «Industrial Heat Engineering»; andidate of technical science
410054, Saratov, st. Politekhnicheskaya, 77
Scopus Author ID: 56780283600
A. V. Portyankin
Russian Federation
Portyankin Aleksey Vladimirovich, associate professor of the department: «Thermal and Nuclear Power Engineering» named after A. I. Andryushchenko; candidate of technical science
410054, Saratov, st. Politekhnicheskaya, 77
References
1. Energy Strategy of Russia for the Period up to 2035 / Government of the Russian Federation. – Moscow, 2020. – 79 p.
2. Standard of the organization of JSC «SO UES». Standards for the participation of power units of nuclear power plants in the standardized primary frequency regulation. – Introduced. 19.08.2013. – JSC «SO UES», 2013.
3. A. N. Bairamov. Assessment of the working life of turbine blades and discs under cyclic loads conditions with hydrogen overheating of the steam in the steam turbine cycle of NPP / A. N. Bairamov // International Journal of Hydrogen Energy. – 2024. – Volume 65. – Pages 864-871.
4. Aminov R. Z. Estimation of resource capabilities of the NPP turbine unit under the primary frequency control of the current in the power system / R. Z. Aminov, A. N. Bairamov, A. B. Moskalenko // IOP Conference Series: Materials Science and Engineering. 4th International Scientific and Technical Conference on Energy Systems. – 2020. – 012004.
5. Aminov R. Z. Participation efficiency of the NPP with the hydrogen production facility in primary frequency regulation of the power system / R. Z. Aminov, A. N. Bairamov // Journal of Physics: Conference Series. – 2018. – 012023.
6. Aminov R. Z. Evaluation of system effectiveness of multifunctional hydrogen complex at nuclear power plants / R. Z. Aminov, A. N. Bairamov, M. V. Garievskii // International Journal of Hydrogen Energy. – 2020. – V. 45. – No. 29. – Pp. 14614-14624.
7. Aminov R. Z. Assessment of the system efficiency of the atomic-hydrogen energy complex / R. Z. Aminov, A. N. Bairamov, M. V. Garievsky // Thermal Power Engineering. – 2019. – No. 3. – Pp. 57-71.
8. Bairamov A. N. Development of scientific foundations for increasing the efficiency of NPPs when combined with a hydrogen complex [Text]: dis. for the degree of Doctor of Engineering Sciences: 05.14.01 / Artem Nikolaevich Bairamov; scientific consultant R. Z. Aminov. – Saratov, 2022. – 397 p.
9. Aminov R. Z. Combining hydrogen energy cycles with nuclear power plants / R. Z. Aminov, A. N. Bairamov. – Moscow: Nauka, 2016. – 254 p.
10. Patent. No. 2769511. Russian Federation. Steam turbine plant of NPPs with a system for safe use of hydrogen / Bairamov A. N.; applicant and patent holder Bairamov A. N. – No. 2021112671; declared. 29.04.2021; publ. 01.04.2022. Bulletin No. 10.
11. Patent No. 2821330 Russian Federation, IPC G21D 1/00 (2006.01). Hydrogen complex based on high-pressure water electrolysis for combination with a nuclear power plant / applicants and patent holders Bairamov A. N., Makarov D. A. No. 2023115369; declared 09.06.2023; publ. 21.06.2024 Bulletin № 18.
12. Bairamov A. N., Makarov D. A. Development and justification of a new principle for combining a nuclear power plant with a hydrogen complex // Alternative Energy and Ecology (ISJAEE), 05 (422) 2024, pp. 30-50.
13. Patent. № 2821330 Russian Federation, IPC G21D 1/00 (2006.01). Hydrogen complex based on high-pressure water electrolysis for combination with a nuclear power plant / applicants and patent holders Bayramov A. N., Makarov D. A. № 2023115369; declared 09.06.2023; published 21.06.2024 Bulletin № 18.
14. R. Z. Aminov. Assessment of the Performance of a Nuclear-Hydrogen Power Generation System // R. Z. Aminov, A. N. Bairamov and M. V. Garievskii / Thermal Engineering. – 2019. – Vol. 66. – No. 3.– Pp. 196-209.
15. Aminov R. Z. Assessment of the system efficiency of NPP in combination with a hydrogen energy complex / Aminov R. Z., Bairamov A. N. // Bulletin of the Russian Academy of Sciences. Power Engineering. – 2019. – No. 1. – Pp. 70-81.
16. Bairamov A. N. Evaluation of the efficiency of promising options for combining NPPs with a hydrogen complex / A. N. Bairamov // Energetik. – 2023. – No. 2. – Pp. 8-13.
17. A. N. Bairamov. Comprehensive assessment of system efficiency and competitiveness of nuclear power plants in combination with hydrogen complex // International Journal of Hydrogen Energy. – 2023. – Volume 48. – Issue 70. – Pages 27068-27078.
18. Patent. 2758644 Russian Federation, IPC G 21D 5/16, F22B 1/26. A system for combustion of hydrogen in oxygen in a swirling flow with increased safety using ultra-high-temperature ceramic materials for superheating the working fluid in the steam turbine cycle of a nuclear power plant / applicant and patent holder A. N. Bairamov No. 2021112668/07; declared 04/29/2021; published 11/01/2021, Bulletin No. 31. – 17 p.: ill.
19. Hydrogen. Properties, production, storage, transportation, application: reference ed. / D. Yu. Hamburg [et al.]. Moscow: Chemistry, 1989. – 672 p.
20. Bairamov A. N. Technical and economic aspects of underground arrangement of metal tanks for storing hydrogen and oxygen in the hydrogen energy complex / A. N. Bairamov // Proceedings of Akademenergo. – 2014. – No. 2. – Pp. 79-86.
21. Bairamov A. N. Development and justification of the scheme of underground arrangement of metal tanks for storing hydrogen and oxygen in the hydrogen energy complex / A. N. Bairamov // Problems of improving the fuel and energy complex: collection of scientific papers. Issue 7. – Saratov: Publishing House of Saratov State University, 2012. – Pp. 18-27.
22. Experimental results of the study of underburned hydrogen during burning in oxygen medium / R. Z. Aminov, A. I. Schastlivtsev, A. N. Bairamov // International Journal of Hydrogen Energy. – 2022. – Volume 47. – Issue 65. – Pages 28176-28187.
23. Aminov R. Z. Experimental Evaluation of the Composition of the Steam Generated during Hydrogen Combustion in Oxygen / R. Z. Aminov, A. I. Schastlivtsev, and A. N. Bayramov // High Temperature. – 2020. – Vol. 58. – No. 3. – Pp. 410-416.
24. Aminov R. Z. Experimental assessment of the proportion of unreacted hydrogen during combustion in an oxygen environment / R. Z. Aminov, A. I. Schastlivtsev, A. N. Bairamov // Alternative Energy and Ecology: International Scientific Journal. – 2020. – № 7-18 (330-341). – Pp. 68-79.
25. Nuclear power plants with WWER reactors. From physical principles of operation to project evolution / S. A. Andrushechko, A. M. Afrov, B. Yu. Vasiliev, V. N. Generalov, K. B. Kosourov, Yu. M. Semchenkov, V. F. Ukraintsev – M.: Logos, 2010. – 604 p.
26. Baklushin R. P. Operation of NPP. Part I. Operation of Nuclear Power Plants in Power Systems. Part II. Radioactive Waste Management: A Textbook. – M.: NIYAUMIFI, 2011. – 304 p.
27. Technological Systems of the Reactor Department. Part 2. Auxiliary Systems Data in PDF format. URL: https://studfile.net/preview/5288618/page:18/ (date accessed: 11.10.2024).
28. Ivanova N. A. Low-temperature catalytic hydrogen converter based on hydrophobic catalysts [Text]: dissertation for the degree of candidate of technical sciences: 05.17.01 – Technology of inorganic substances / Natalia Anatolyevna Ivanova. – M., 2020. – 168 p.
29. Jakubski L. Applicability of Composite Magnetic Membranes in Separation Processes of Gaseous and Liquid Mixtures – A Review / L. Jakubski, G. Dudek, R. Turczyn // Membranes 2023. – No. 384.
30. Cie´sla A. Theoretical Consideration for Oxygen Enrichment from Air Using High-T C Superconducting Membrane / A. Cie´sla // Przeglad Elektrotechniczny (Electr. Rev.) 2012. – No. 88. – Pp. 40-43.
31. Raveshiyan S. Intensification of O2/N2 Separation by Novel Magnetically Aligned Carbonyl Iron Powders / Polysulfone Magnetic Mixed Matrix Membranes / S. Raveshiyan, S. S. Hosseini, J. Karimi-Sabet // Chem. Eng. Process. Process Intensification. – 2020. – Volume 150. – 107866.
32. Darmawan A. Gas Permeation Redox Effect of Binary Iron Oxide/Cobalt Oxide Silica Membranes / A. Darmawan, J. Motuzas, S. Smart, A. Julbe, J. C. Diniz da Costa // Separation and Purification Technology. – Volume 171. – 2016. – Pages 248-255.
33. Riasat Harami H. Magnetic NanoFe2O3 – Incorporated PEBA Membranes for CO2/CH4 and CO2/ N2 Separation: Experimental Study and Grand Canonical Monte Carlo and Molecular Dynamics Simulations / H. Riasat Harami, M. Asghari, A. H. Mohammadi // Greenh. Gases Sci. Technol. – No. 9. – 2019. – 306-330.
34. Yap, Y. K. Effects of an Alternating Magnetic Field towards Dispersion of α-Fe2O3/TiO2 Magnetic Filler in PPOdm Polymer for CO2/CH4 Gas Separation / Y. K. Yap, P.C. Oh // Membranes 2021. – No. 11. – 641.
35. Rybak A. The magnetic inorganic-organic hybrid membranes based on polyimide matrices for gas separation / A. Rybak, A. Rybak, W. Kaszuwara, S. Awietjan, R. Molak, P. Sysel, Z. J. Grzywna // Composites Part B: Engineering. – Volume 110. – 2017. – Pages 161-170.
36. Rybak A. The rheological and mechanical properties of magnetic hybrid membranes for gas mixtures separation / A. Rybak, A. Rybak, W. Kaszuwara, S. Awietjan, J. Jaroszewicz // Materials Letters. – Volume 183. – 2016. – Pages 170-174.
37. Georgios N. Karanikolos, Evangelos Favvas, Nikolaos Heliopoulos, Sergios K. Papageorgiou. «Membrane Gas Separation under Magnetic Field» WO/2019/012317, published on 17-1-2019. USPTO US2020/0338496A1, 29-10-2020, Gulf Cooperation Council (GCC), GC 2018-35657, 12-Jul-2018. European Patent Office EP3651877A1, 20-5-2020.
38. Rybak A. Metal substituted sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) hybrid membranes with magnetic fillers for gas separation / A. Rybak, A. Rybak, W. Kaszuwara, M. Nyc, M. Auguścik // Separation and Purification Technology. – Volume 210. – 2019. – Pages 479-490.
39. Nikpour N. Magnetic field-induced improvement in O2/N2 gas separation applications of simultaneously co-casted superparamagnetic mixed matrix membranes / N. Nikpour, A. H. Montazer, A. Khayatian // Journal of Industrial and Engineering Chemistry. – Volume 105. – 2022. – Pages 530-538.
40. Wang Y. Co@NC@ZIF-8-hybridized carbon molecular sieve membranes for highly efficient gas separation / Y. Wang, K. Wang, X. Zhang, J. Li // Journal of Membrane Science. – Volume 682. – 2023. – P. 121781.
41. Cao X. Structurally ordered core-shell MOFs in mixed matrix membrane as magnetic sieves for O2/N2 separation / X. Cao, R. Song, L. Zhang, F. Cheng, Z. Wang // Journal of Membrane Science. – Volume 698. – 2024. – 122624.
42. Zhao H. PIM-1 mixed matrix membranes incorporated with magnetic responsive cobalt-based ionic liquid for O2/N2 separation / H. Zhao, T. Song, X. Ding, R. Cai, X. Tan, Y. Zhang / / Journal of Membrane Science. – Volume 679. – 2023. – 121713.
43. Ashtiani S. Stimuli-responsive of magnetic metal-organic frameworks (MMOF): Synthesis, dispersion control, and its tunability into polymer matrix under the augmented-magnetic field for H2 separation and CO2 capturing applications / S. Ashtiani, C. Regmi, J. Azadmanjiri, N. V. Hong, V. F. Průša, Z. Sofer, K. Friess // International Journal of Hydrogen Energy. – Volume 47. – Issue 46. – 2022. – Pages 20166-20175.
44. Shi F. Orientation of two-dimensional materials mf-BN in Pebax mixed matrix membranes by magnetic fields for enhancing CO2/N2 separation performance / F. Shi, K. Wang, F. Guo, X. Ruan, G. He, C. Ma, X. Jiang, W. Xiao // Separation and Purification Technology. – Volume 343. – 2024. – 127040.
45. Saeed Ashtiani, Chhabilal Regmi, Jalal Azadmanjiri, Nguyen Vu Hong, Vlatsimil Fíla, Filip Průša, Zdeněk Sofer, Karel Friess, Stimuli-responsive of magnetic metal-organic frameworks (MMOF): Synthesis, dispersion control, and its tunability into polymer matrix under the augmented-magnetic field for H2 separation and CO2 capturing applications, International Journal of Hydrogen Energy, Volume 47, Issue 46, 2022, Pages 20166-20175.
46. Strengthening external magnetic fields with activated carbon graphene for increasing hydrogen production in water electrolysis / Purnami [et.al.] // International Journal of Hydrogen Energy. – 2020. – Volume 45. – Issue 38. – Pages 19370-19380.
47. Porous electrode improving energy efficiency under electrode-normal magnetic field in water electrolysis / Hong-Bo Liu [et. al.] // International Journal of Hydrogen Energy. – 2019. – Volume 44. – Issue 41. – Pages 22780-22786.
48. Effects of magnetic field on water electrolysis using foam electrodes / Yang Liu [et. al.] // International Journal of Hydrogen Energy. – 2019. – Volume 44. – Issue 3. – Pages 1352-1358.
49. Ming-Yuan Lin. Effects of magnetic field and pulse potential on hydrogen production via water electrolysis / Ming-Yuan Lin and Lih-Wu Hourng // Int. J. Energy Res. – 2014. – Vol. 38. – Pages 106-116.
50. Ming-Yuan Lin. The effect of magnetic force on hydrogen production efficiency in water electrolysis / Ming-Yuan Lin, Lih-Wu Hourng, Chan-Wei Kuo // International Journal of Hydrogen Energy. – 2012. – Volume 37. – Issue 2. – Pages 1311-1320.
51. Investigation of alkaline water electrolysis performance for different cost effective electrodes under magnetic field / Mehmet Fatih Kaya [et.al.] // International Journal of Hydrogen Energy. – 2017. – Volume 42. – Issue 28. – Pages 17583-17592.
52. Takami Iida. Water Electrolysis under a Magnetic Field / Takami Iida, Hisayoshi Matsushima, and Yasuhiro Fukunaka // Journal of The Electrochemical Society. – 2007. – 154 (8). – Pages E112-E115.
53. Magnetic field effects on the mass transport at small electrodes studied by voltammetry and magnetohydrodynamic impedance measurements / Ralf Peipmann [et.al.] // Electrochimica Acta. – 2010. – Vol. 56. – Pages 133-138.
54. Hisayoshi Matsushimaa, Takami Iida, Yasuhiro Fukunaka. Gas bubble evolution on transparent electrode during water electrolysis in a magnetic field / Hisayoshi Matsushimaa, Takami Iida, Yasuhiro Fukunaka // Electrochimica Acta. – 2013. – Volume 100. – Pages 261-264.
55. Hydrogen bubble growth at micro-electrode under magnetic field / Hongbo Liu [et.al.] // Journal of Electroanalytical Chemistry. – 2015. – Vol. 754. – Pages 22-29.
56. Hydrogen evolution under the influence of a magnetic field / Jakub Adam Koza [et.al.] // Electrochimica Acta. – 2011. – Vol. 56. Pages 2665-2675.
57. On the Electrolyte Convection around a Hydrogen Bubble Evolving at a Microelectrode under the Influence of a Magnetic Field / Dominik Baczyzmalski [et.al.] // Journal of The Electrochemical Society. – 2016. – Vol. 163. – Issue 9. – Pages: E248-E257.
58. Stabilizing effect of a magnetic field on a gas bubble produced at a microelectrode / Dámaris Fernández [et.al.] // Electrochemistry Communications. – 2012. – Vol.18. – Pages 28-32.
59. The effect of a Lorentz-force-driven rotating flow on the detachment of gas bubbles from the electrode surface / Tom Weier [et.al.] // International Journal of Hydrogen Energy. – 2017. – Volume 42, Issue 33. – Pages 20923-20933.
60. Influence of magnetic field on hydrogen reduction and co-reduction in the Cu/CuSO4 system / Dámaris Fernández [et.al.] // Electrochimica Acta. – 2010. – Vol. 55. – Pages 8664-8672.
61. Hisayoshi Matsushima. Observation of bubble layer formed on hydrogen and oxygen gas-evolving electrode in a magnetic field / Hisayoshi Matsushima, Takami Iida, Yasuhiro Fukunaka // J Solid State Electrochem. – 2012. – Vol. 16. – Pages: 617-623.
62. The effect of magnetic and optical field in water electrolysis / Noriah Bidin [et.al.] // International Journal of Hydrogen Energy. – 2017. – Volume 42. – Issue 26. – Pages 16325-16332.
63. T. Weiera. The two-phase flow at gas-evolving electrodes: Bubble-driven and Lorentz-force-driven convection / T. Weiera and S. Landgraf // European Physical Journal Special Topics. – 2013. – Vol. 220. – Pages 313-322.
64. Korovin N. V. Fuel cells and electrochemical power plants. – M.: MPEI Publishing House, 2005. – 280 p.
65. Korovin N. V. Corrosion and electrochemical properties of palladium. – M.: Metallurgy, 1976. – 240 p.
66. Cleaning of process gases / edited by T. A. Semenova and I. L. Leites. – Moscow: Chemistry, 1977. – 488 p.
67. Hunter J. B. Ultrapure hydrogen by diffusion through palladium alloys // Disv. Pet. Chem. Prepr. – 1963. – Vol. 8. – P. 4.
68. Radchenko R. V., Mokrushin A. S., Tyulpa V. V. Hydrogen in energy: textbook. – Ekaterinburg: UrFU, 2014. – 229 p.
69. Slovetsky D. Ultrapure hydrogen / D. Slovetsky // The Chemical Journal. – 2010. – No. 1-2. – Pp. 33-38.
70. Didenko L. P. Steam reforming of methane and its mixtures with propane in a membrane reactor with an industrial nickel catalyst and foil made of Pd-Ru alloy / L. P. Didenko, L. A. Semenova, P. E. Chizhov, T. V. Dorofeeva // Petrochemistry. – 2019. – T. 59. – No. 3. – P. 271-281.
71. Lukyanov B. N. Production of ultrapure hydrogen in reactors with membrane separation for fuel cells / Lukyanov B. N. // Chemistry for Sustainable Development. – 2012. – No. 20. – Pp. 291-303.
72. Shigarov A. B. Application of Pd membranes in catalytic reactors of steam reforming of methane for the production of pure hydrogen / A. B. Shigarov, V. D. Meshcheryakov, V. A. Kirillov // Theoretical foundations of chemical technology. – 2011. – Vol. 45. – No. 5. – Pp. 504-518.
73. Alentyev A. Yu. Selection of membrane materials for the separation of H2-containing mixtures: database analysis / A. Yu. Alentyev, Yu. P. Yampolsky, M. N. Vidyakin, Yu. N. Lazareva // High-molecular compounds. Series A. – 2006. – Vol. 48. – No. 10. – Pp. 1876-1884.
74. Vandyshev A. B. Analysis of the efficiency of a 2,25 μm thick Pd/Ag membrane on a porous ceramic substrate in a laboratory membrane reactor / A. B. Vandyshev, V. A. Kulikov // Chemical and oil and gas engineering. – 2019. – No. 2. – Pp. 26-30.
75. Vandyshev A. B. Analysis of the design calculation of a membrane-catalytic converter for producing high-purity hydrogen from biodiesel fuel / A. B. Vandyshev, V. A. Kulikov // Chemical and oil and gas engineering. – 2019. – No. 3. – Pp. 19-23.
76. Vandyshev A. B. Evaluation of design parameters of a reactor based on 32 membrane-catalytic disktype modules for producing high-purity hydrogen from diesel fuel / A. B. Vandyshev, V. A. Kulikov // Chemical and oil and gas engineering. – 2019. – No. 10. – Pp. 24-27.
77. Vandyshev A. B. Modeling of a membrane converter with a carbon monoxide conversion catalyst for extracting high-purity hydrogen from methane steam reforming products / A. B. Vandyshev, V. A. Kulikov // Chemical and oil and gas engineering. – 2018. – No. 5. – Pp. 17-21.
78. Vandyshev A. B. Evaluation of the efficiency of producing high-purity hydrogen in membrane-catalytic systems from the products of steam reforming of gasoline, kerosene and diesel fuel / A. B. Vandyshev, V. A. Kulikov // Chemical and oil and gas engineering. – 2017. – No. 9. – Pp. 22-26.
79. Thermal power systems: Optimization studies / Kler A. M., N. P. Dekanova, E. A. Tyurina et al. – Novosibirsk: Science, 2008. – 236 p.
80. Membrane unit for hydrogen extraction from a gas mixture / V. I. Baykov, T. V. Sidorovich, S. P. Germanovich, P. K. Znovets, N. V. Kolyago, V. K. Gleb // Patent for utility model of the Republic of Belarus No. 7690 dated October 30, 2011.
81. Varezhkin A. V. Use of membrane technology for hydrogen extraction from process gas mixtures / A. V. Varezhkin // Interaction of hydrogen isotopes with structural materials: Collection of reports of the 15th International School of Young Scientists and Specialists named after A. A. Kurdyumov. – Sarov, 2023. – Pp. 260-280.
82. Athayde A. L. Metal composite for hydrogen separation / A. L. Athayde, R. W. Baker, P. Nguyen // Journal of Membrane Science. – 1994. – Vol. 94. – Issue 1. – Pp. 299-311.
83. Buxbaum R. E., Marker T. L. Hydrogen transport through non-porous membranes of palladium-coated niobium, tantalum, vanadium / R. E. Buxbaum, T. L. Marker // Journal of Membrane Science. – 1993. – Vol. 85. – Issue 1. – Pp. 29-38.
84. Nicolaidis P. A comparative overview of hydrogen production process / P. Nicolaidis, A. Poullikkas // Renewable and Sustainable Energy Reviews. – 2017. – Vol. 67. – January. – Pp. 597-611.
85. Eldund D. J. The relationship between intermetallic diffusion and flux decline in composite metal membranes: Implications for achieving long membrane lifetime / D. J. Eldund, J. McCarthy // Journal of Membrane Science. – 1995. – Vol. 107. – Issue 1-2. – Pp. 147-153.
86. Membrane device for hydrogen extraction / I. R. Kalimullin, G. Kh. Gumerova, A. V. Dmitriev, N. A. Nikolaev // Patent for utility model of the Russian Federation No. 83713. 2013. Bulletin No. 9. – 6 p.
87. Piven V. A. Promising materials for obtaining highly pure hydrogen / V. A. Piven, V. I. Shipalov, R. M. Zakaryan, E. D. Zemlyankin // XII international scientific-practical. Conf. of young scientists, dedicated to the 61st anniversary of Yuri Gagarin’s flight into space. Krasnodar, 2022. – Pp. 72-77.
88. Palladium-based alloy for producing ultrapure hydrogen and its isotopes / V. A. Goltsov, P. V. Geld, G. E. Kagan, et al. USSR Author’s Certificate No. 549981; 1977. Bulletin No. 43. – 1 p.
89. Piven V. A. Palladium alloys with platinum group metals for producing ultra-pure hydrogen / V. A. Piven, I. E. Gabis, N. I. Sidorov, E. A. Pastukhov // Physical Problems of Hydrogen Energy. – St. Petersburg, November 20-22, 2003. – Pp. 39-40.
90. Burkhanov G. S. Palladium Alloys for Hydrogen Energy / G. S. Burkhanov, N. B. Gorina, N. B. Kolchugina, N. R. Roshan // Journal of the Russian Chemical Society named after D. I. Mendeleyev. – 2006. –V. L. – № 4. – Pp. 36-40.
91. Sivkov M. N. Results of applied research in the field of hydrogen membrane technology / M. N. Sivkov, I. N. Sakhanskaya, D. I. Slovetsky // Non-ferrous metals. – 2007. – No. 1. – Pp. 36-43.
92. Composite membrane for hydrogen separation from gas mixtures / A. I. Livshits, M. E. Notkin, V. N. Alimov, A. O. Busnyuk // Patent for invention of the Russian Federation No. 2568989. – 2015. – Bulletin No. 32. – 10 p.
93. Petriev I. S. Structure and gas separation properties of membranes based on palladium-silver films. Diss. Cand. of Engineering Sciences, Nalchik, 2016. – 119 p.
94. Slovetsky D. I. Production of pure hydrogen / D. I. Slovetsky, E. M. Chistov, N. R. Roshan // Alternative energy and ecology (ISJAEE). – 2004. – No. 1. – Pp. 43-46.
95. Petriev I. S. Study of hydrogen permeability through surface-modified Pd-Cu membranes at low temperatures / I. S. Petriev, P. D. Pushankina, G. A. Andreev // Membranes and membrane technologies. – 2023. – V. 13. – No. 5. – Pp. 412-422.
96. Didenko L. P. Steam reforming of ethane and its mixtures with methane in a membrane reactor with Pd-Ru alloy foil / L. P. Didenko, V. N. Babak, L. A. Sementsova, T. V. Dorofeeva, P. E. Chizhov, S. V. Gorbunov // Membranes and membrane technologies. – 2023. – V. 13. – No. 2. – Pp. 83-95.
97. Peters T. Pd-based membranes: overview and perspectives / T. Peters, A. Caravella // Membranes. – 2019. – 9(2), 25.
98. Arratibel Plazaola A. Recent advances in Pdbased membranes for membrane reactors / A. Arratibel Plazaola, D. A. Pacheco Tanaka, M. Van Sint Annaland, F. Gallucci // Molecules. – 2017. – 22(1), 51.
99. Alique D.Review of supported Pd-based membranes preparation by electroless plating for ultra-pure hydrogen production / D. Alique, D. Martinez-Diaz, R. Sanz, J. A. Calles // Membranes. – 2018. – 8(1), 5.
100. Wunsch A. Recent developments in compact membrane reactors with hydrogen separation / A. Wunsch, P. Kant, M. Mohr, K. Haas-Santo, P. Pfeifer, R. Dittmeyer // Membranes. – 2018. – 8(4), 107.
101. Burke G. Yu. Handbook of Magnetic Phenomena / G. Yu. Burke. – 1991. – 384 p.
102. Pat. 2769072 Russian Federation, IPC B 01D 53/00, B03C 1/02, C01B 3/50 Magnetic separation of unreacted hydrogen gas from a pressurized water vapor environment using a solenoid magnetic field amplifier in a steam turbine cycle of nuclear thermal power plants / applicant and patent holder A. N.
103. Dytnersky Yu. I. Membrane separation of gases / Yu. I. Dytnersky, V. P. Brykov, G. G. Kagramanov. – M.: Chemistry, 1991. – 344 p.
104. Study of field-setting systems. Guidelines for performing laboratory work No. 407-VI. – Tomsk: TPU Publishing House. 2003. – 20 p.
105. Bairamov A. N. Justification of layout solutions for combining NPPs with a hydrogen energy complex based on the minimum risk criterion / A. N. Bairamov, V. S. Kirichkov // Proceedings of Akademenergo. – 2018. – No. 1. – Pp. 57-71.
106. Guide to assessing fire risks of industrial enterprises: approved by FGU VNIIPO EMERCOM of Russia on March 17, 2006. – 97 p.
107. Aminov R. Z. Explosion and fire hazard at NPPs with hydrogen superstructures. Analysis of the problem and solutions / R. Z. Aminov, V. A. Khrustalev, A. V. Portyankin // Proceedings of the Academy of Energy. – 2013. – No. 3. – Pp. 41-51.
108. Aminov R. Z. Efficiency of energy complexes based on nuclear power plants when combined with additional energy sources, taking into account risk factors / R. Z. Aminov, V. A. Khrustalev, A. V. Portyankin // Thermal Power Engineering. – 2015. – No. 2. – Pp. 55-62.
Review
For citations:
Bairamov A.N., Makarov D.A., Mrakin A.N., Portyankin A.V. Development and substantiation of a method for safe use of hydrogen in the event of overheating of the working fuel in the steam turbine cycle of nuclear power plants. Alternative Energy and Ecology (ISJAEE). 2024;(12):48-94. (In Russ.) https://doi.org/10.15518/isjaee.2024.12.048-094