Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Hydrogen evolution reaction in reverse electrodialysis: a mini review

https://doi.org/10.15518/isjaee.2024.12.095-108

Abstract

The contact of saltier and fresher water forms a salinity gradient, which is an unconventional source of renewable energy. A promising method of extracting this energy is reverse electrodialysis using hydrogen generation. The conditions required for hydrogen generation by this method can be achieved by a variety of approaches including microbial cell and electrolysis. This paper reviews the works reporting hydrogen generation in the reverse electrodialysis process, reports the competitiveness of this method compared to conventional electrode reactions, and concludes that it is promising to use dimensionless criteria to compare the amount of hydrogen and specific power generated using different approaches.

About the Authors

A. V. Klevtsova
FSBEI HE «Kuban State University»
Russian Federation

Klevtsova Anastasia Victorovna, PhD; engineer

350049, Russia, Krasnodar, Stavropolskaya st., 149

Tel.: (918) 323-29-96



A. S. Kirichenko
FSBEI HE «Kuban state agrarian university named after I. T. Trubilin»
Russian Federation

Kirichenko Anna Sergeyevna, PhD in technical sciences, assistant professor of Department of Electric Engineering, Thermotechnics and Renewable Energy Sources

350044, Russia, Krasnodar, Kalinina st., 13

Tel.: (905) 402-18-36

Scopus Author ID: 57217585508



E. V. Kirichenko
FSBEI HE «Kuban state agrarian university named after I. T. Trubilin»
Russian Federation

Kirichenko Evgeniy Vladimirovich, Senior lecturer of Department of Public and International Law

350044, Russia, Krasnodar, Kalinina st., 13

Tel.: (905) 402-18-36



K. A. Kirichenko
FSBEI HE «Kuban State University»
Russian Federation

Kirichenko Ksenia Andreyevna, PhD in chemical sciences, assistant professor of Department of Physical Chemistry

350049, Russia, Krasnodar, Stavropolskaya st., 149

Tel.: (918) 323-29-96



References

1. Essalhi M. The potential of salinity gradient energy based on natural and anthropogenic resources in Sweden / M. Essalhi [et al.] // Renewable Energy. – 2023. – V. 215. – Article 118984.

2. Salinity gradient energy. Technology brief [Электронный ресурс]. Режим доступа: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2014/Jun/Salinity_Energy_v4_WEB.pdf – Заглавие с экрана. – (Дата обращения: 01.11.2024).

3. Pattle R. E. Production of electric power by mixing fresh and salt water in the hydroelectric pile / R. E. Pattle // Nature. – 1954. – V. 174. – P. 660.

4. Manikandan D. Salinity gradient induced blue energy generation using two-dimensional membranes / D. Manikandan [et al.] // npj 2D Mater Appl. – 2024. – V. 8. – Article 47.

5. Ye M. Performance of a mixing entropy battery alternately flushed with wastewater effluent and seawaterrecovery of salinity gradient energy / M. Ye [et al.] // Energy Environ. Sci. – 2014. – V. 7. – P. 2295-2300.

6. Brogioli D. Exploiting the spontaneous potential of the electrodes used in the capacitive mixing technique for the extraction of energy from salinity difference / D. Brogioli [et al.] // Energy Environ Sci. – 2012. – V. 5. – №. 12. – P. 987-9880.

7. Abdullah Shah S. Energetic valorisation of saltworks bitterns via reverse electrodialysis: A laboratory experimental campaign / S. Abdullah Shah [et al.] // Membranes – 2023. – V. 13. – Article 293.

8. Daniilidis A. Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis / A. Daniilidis [et al.] // Renewable Energy. – 2014. – V. 64. – P. 123-131.

9. Jang J. Developments and future prospects of reverse electrodialysis for salinity gradient power generation: Influence of ion exchange membranes and electrodes / J. Jang [et al.] // Desalination. – 2020. – V. 491. – Article 114540.

10. Nethravathi. Chapter 6 – Ion exchange membranes in reverse electrodialysis process / Nethravathi, A.M. Isloor, A.M. Kumar // Basile A. Current trends and future developments on (bio-) membranes / A. Basile, K. Ghasemzadeh // Amsterdam: Elsevier, 2024. – P. 157-189.

11. He Z. Revised spacer design to improve hydrodynamics and anti-fouling behavior in reverse electrodialysis processes / Z. He [et al.] // Desalination and Water Treatment. – 2016. – V. 57. – № 58. – P. 28176-28186.

12. Wang L. Deep learning-assisted prediction and profiled membrane microstructure inverse design for reverse electrodialysis / L. Wang [et al.] // Energy. – 2024. – V. 312. – Article 133484.

13. Loza S. Profiled ion-exchange membranes for reverse and conventional electrodialysis / S. Loza [et al.] // Membranes. – 2022. – V. 12. – № 10. – Article 985.

14. Hatzell M. C. Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems / M.C. Hatzell [et al.] // Phys. Chem. Chem. Phys. – 2014. – V. 16. – P. 1632-1638.

15. Vermaas D. A. Theoretical power density from salinity gradients using reverse electrodialysis / D. A. Vermaas [et al.] // Energy Procedia. – 2012. – V. 20. – P. 170-184.

16. Vermaas D. A. Doubled power density from salinity gradients at reduced intermembrane distance / D. A. Vermaas [et al.] // Environ. Sci. Technol. – 2011. – V. 45. – № 16. – P. 7089-7095.

17. Vermaas D. A. Fouling in reverse electrodialysis under natural conditions / D.A. Vermaas [et al.] // Water Research. – 2013. – V. 47. – № 3. – P. 1289-1298.

18. Rybalkina O. Dependence of electrochemical properties of MK-40 heterogeneous membrane on number of adsorbed layers of polymers / O. Rybalkina [et al.] // Membranes. – 2022. – V. 12. – № 2. – Article 145.

19. Lin S. Salinity gradient energy is not a competitive source of renewable energy / S. Lin [et al.] // Joule. – 2024. – V. 8. – №3. – P. 334-343.

20. Li J. Salinity gradient energy harvested from thermal desalination for power production by reverse electrodialysis / J. Li [et al.] // Energy Conversion and Management. – 2022. – V. 252. – Article 115043.

21. Li J. Experimental study on salinity gradient energy recovery from desalination seawater based on RED / J. Li [et al.] // Energy Conversion and Management. – 2021. – V. 244. – Article 114475.

22. Han J.-H. Hydrogen production from water electrolysis driven by high membrane voltage of reverse electrodialysis / J.-H. Han [et al.] // J. Electrochem. Sci. Technol. – 2019. – V. 10, № 3. – P. 302-312.

23. Higa M. Sustainable hydrogen production from seawater and sewage treated water using reverse electrodialysis technology / M. Higa [et al.] // Water Practice and Technology. – 2019. – V. 14. – № 3. – P. 645-651.

24. Hatzell M. C., Zhu X., Logan B.E. Simultaneous hydrogen generation and waste acid neutralization in a reverse electrodialysis system // ACS Sustainable Chem. Eng. – 2014. – V. 2. – P. 2211-2216.

25. Pellegrino A. Green hydrogen production via reverse electrodialysis and assisted reverse electrodialysis electrolyser: Experimental analysis and preliminary economic assessment / A. Pellegrino [et al.] // Int. J. Hydrogen Energy. – 2024. – V. 76. – P. 1-15.

26. Chen X. Storable hydrogen production by Reverse Electro-Electrodialysis (REED) / X. Chen [et al.] // J. Membr. Sci. – 2017. – V. 544. – P. 397-405.

27. Chen X. Water-dissociation assisted electrolysis for hydrogen production in a salinity power cell / X. Chen [et al.] // ACS Sustainable Chem. Eng. – 2019. – V. 7. – P. 13023-13030.

28. Wu X. Enhancement of power density and hydrogen productivity of the reverse electrodialysis process by optimizing the temperature gradient between the working solutions / X. Wu [et al.] // Chem. Eng. J. – 2024. – V. 498. – Article 155385.

29. Wu X. Hydrogen and electricity cogeneration driven by the salinity gradient from actual brine and river water using reverse electrodialysis / X. Wu [et al.] // Applied Energy. – 2024. – V. 367. – Article 123320.

30. Kim Y. Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells / Y. Kim, B. E. Logan// PNAS. – 2011. – V. 108. – P. 16176-16181.

31. Hidayat S. Performance of a continuous flow microbial reverse electrodialysis electrolysis cell using a non-buffered substrate and catholyte effluent addition / S. Hidayat [et al.] // Bioresour. Technol. – 2017. – V. 240. – P. 77-83.

32. Song Y.-H. Hydrogen production in microbial reverse-electrodialysis electrolysis cells using a substrate without buffer solution / Y.-H. Song [et al.] // Bioresource Technology. – 2016. – V. 210. – P. 56-60.

33. Song Y. H. Simultaneous hydrogen production and struvite recovery within a microbial reverse-electrodialysis electrolysis cell / Y. H. Song [et al.] // J. Ind. Eng. Chem. – 2021. – V. 94. – P. 302-308.

34. Nam J. Y. Hydrogen generation in microbial reverse electrodialysis electrolysis cells using a heat-regenerated salt solution / J. Y. Nam [et al.] // Environ. Sci. Technol. – 2012. – V. 46. – P. 5240-5246.

35. Watson V. J. Hydrogen production from continuous flow, microbial reverse-electrodialysis electrolysis cells treating fermentation wastewater / V. J. Watson [et al.] // Bioresour. Technol. – 2015. – V. 195. – P. 51-56.

36. Luo X. Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions / X. Luo [et al.] // Bioresour. Technol. – 2013. – V. 140. – P. 399-405.

37. Tufa R.A. Hydrogen production from industrial wastewaters: An integrated reverse electrodialysis – Water electrolysis energy system / R. A. Tufa [et al.] // J. Cleaner Prod. – 2018. – V. 203. – P. 418-426.

38. Tufa R. A. Salinity gradient power-reverse electrodialysis and alkaline polymer electrolyte water electrolysis for hydrogen production / R. A. Tufa [et al.] // J. Membr. Sci. – 2016. – V. 514. – P. 155-164.

39. Veerman J. Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water / J. Veerman [et al.] // J. Membr. Sci. – 2009. – V. 327. – № 1-2. – V. 136-144.

40. Kim H. Optimization of the number of cell pairs to design efficient reverse electrodialysis stack / H. Kim [et al.] // Desalination. – 2021. – V. 497. – Article 114676.

41. Veerman J. Reverse electrodialysis: Comparison of six commercial membrane pairs on the thermodynamic efficiency and power density / J. Veerman [et al.] // J. Membr. Sci. – 2009. – V. 343. – № 1-2. – P. 7-15.

42. Długołęcki P. Current status of ion exchange membranes for power generation from salinity gradients / P. Długołęcki [et al.] // J. Membr. Sci. – 2008. – V. 319. – № 1-2. – P. 214-222.

43. Long R. Performance analysis of reverse electrodialysis stacks: Channel geometry and flow rate optimization / R. Long [et al.] // Energy. – 2018. – V. 158. – P. 427-436.

44. Lee J.-H. Surface-modified pore-filled anion-exchange membranes for efficient energy harvesting via reverse electrodialysis / J.-H. Lee [et al.] // Membranes. – 2023. – V. 13. – № 12. – Article 894.

45. Sugimoto Y. Power generation performance of reverse electrodialysis (RED) using various ion exchange membranes and power output prediction for a large RED stack / Y. Sugimoto [et al.] // Membranes. – 2022. – V. 12. – № 11. – Article 1141.

46. Hu J. Multi-stage reverse electrodialysis: Strategies to harvest salinity gradient energy / J. Hu [et al.] // Energy Conversion and Management. – 2019. – V. 183. – P. 803-815.

47. Tedesco M. Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines / M. Tedesco [et al.] // J. Membr. Sci. – 2016. – V. 500. – P. 33-45.

48. Wang Q. Hybrid RED/ED system: Simultaneous osmotic energy recovery and desalination of high-salinity wastewater / Q. Wang [et al.] // Desalination. – 2017. – V. 405. – P. 59-67.

49. Roldan-Carvajal M. Salinity gradient power by reverse electrodialysis: A multidisciplinary assessment in the Colombian context / M. Roldan-Carvajal [et al.] // Desalination. – 2021. – V. 503. – P. 114933.

50. Wu X. Hydrogen production from water electrolysis driven by the membrane voltage of a closed-loop reverse electrodialysis system integrating air-gap diffusion distillation technology / X. Wu [et al.] // Energy Conversion Management. – 2022. – V. 268. – Article 115974.

51. Tian H. Unique applications and improvements of reverse electrodialysis: A review and outlook / H. Tian [et al.] // Applied Energy. – 2020. – V. 262. – Article 114482.

52. Li J. Optimizing hydrogen production by alkaline water decomposition with transition metal-based electrocatalysts / J. Li [et al.] // Environmental Chemistry Letters. – 2023. – V. 21. – P. 2583-2617.

53. Mehdizadeh S. Power generation performance of a pilot-scale reverse electrodialysis using monovalent selective ion-exchange membranes / S. Mehdizadeh [et al.] // Membranes – 2021. – V. 11. – Article 27.


Review

For citations:


Klevtsova A.V., Kirichenko A.S., Kirichenko E.V., Kirichenko K.A. Hydrogen evolution reaction in reverse electrodialysis: a mini review. Alternative Energy and Ecology (ISJAEE). 2024;(12):95-108. (In Russ.) https://doi.org/10.15518/isjaee.2024.12.095-108

Views: 54


ISSN 1608-8298 (Print)