Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Анализ напряжённо деформированного состояния корпуса ресивера водорода

https://doi.org/10.15518/isjaee.2024.12.143-157

Аннотация

В данной статье рассматривается работа вспомогательного оборудования при напряженно-деформируемом состоянии. При использовании водорода в энергетике необходимо учитывать и оценивать не только высокие энергетические свойства водородного топлива при использовании, но и его влияние на вспомогательное оборудование. Водород необходимо хранить при высоком давлении (на заправочных станциях давление может достигать 70 МПа). Особое внимание необходимо обратить на целостное состояние ресивера хранения водородного топлива – наиболее подвержены повреждениям точки приварки, сварные швы. Одним из способов анализа работы и последующего прогнозирования состояния вспомогательного оборудования может быть метод конечных элементов. На основе метода конечных элементов построена расчетная схема, которая позволила прогнозировать изменение конструкции во времени под воздействием внутренних сил. Проведенное исследование позволит выявлять дефекты на более ранних сроках работы, получать результаты численного анализа напряженно-деформируемого состояния. В настоящий момент основным стандартом в Российской Федерации, определяющим нормы и методы расчета на прочность, является ГОСТ 24755-89. Настоящий стандарт устанавливает нормы и методы расчета на прочность укрепления отверстий в обечайках, переходах и выпуклых днищах сосудов и аппаратов, применяемых в химической нефтеперерабатывающей и смежных отраслях промышленности, работающих под действием внутреннего или наружного давления. В результате исследований определены допустимые значения геометрических параметров для обеспечения жизнедеятельности и прочности корпуса ресивера водорода для расчетных давлений и возможных колебаний, температуры стенки, допустимого продления срока службы, времени эксплуатации.

Об авторах

Г. Е. Марьин
Казанский государственный энергетический университет
Россия

Марьин Георгий Евгеньевич, канд. техн. наук., доцент

420066, г. Казань, ул. Красносельская, 51;

Scopus Author ID: 57213835443;

Research ID: AGS-9168-2022



О. В. Клейдман
Казанский государственный энергетический университет
Россия

Клейдман Ольга Владимировна, канд. физ.-мат. наук, доцент

420066, г. Казань, ул. Красносельская, 51;

Research ID: JXL-2599-2024



П. В. Илюшин
Институт энергетических исследований Российской академии наук
Россия

Илюшин Павел Владимирович, доктор техн. наук,
руководитель Центра интеллектуальных электроэнергетических систем и распределенной энергетики

117186, Москва, ул. Нагорная 31/2;

Scopus Author ID: 55455903000;

Research ID: P-3799-2017



А. Р. Ахметшин
Казанский государственный энергетический университет
Россия

Ахметшин Азат Ринатович, канд. техн. наук, доцент

420066, г. Казань, ул. Красносельская, 51;

Scopus Author ID: 57211796456;

Research ID: AGM-7165-2022



Список литературы

1. Hewu Kuang. Impact of natural resources and technology on economic development and sustainable environment Yiyan Liang, Wenjia Zhao, Jiahong Cai. – Analysis of resources-energy-growth-environment linkages in BRICS // Resources Policy. – Volume 85. – Part B. – 2023, р. 103865.

2. Wei Jiang. Which is the more important factor of carbon emission, coal consumption or industrial structure. Wei Jiang, Yifei Sun // Energy Policy. – Volume 176. – 2023, р. 113508.

3. Dmitry Pashchenko. Combined methane reforming with a mixture of methane combustion products and steam over a Ni-based catalyst: An experimental and thermodynamic study. Dmitry Pashchenko // Energy. – Volume 185. – 2019. – Pр. 573-584.

4. Siu Hua Chang. An overview of pure hydrogen production via electrolysis and hydrolysis, Siu Hua Chang, Mohd Fariz Rajuli // International Journal of Hydrogen Energy. – Volume 84. – 2024. – Pр. 521-538.

5. Jun Chi. Water electrolysis based on renewable energy for hydrogen production, Jun Chi, Hongmei Yu // Chinese Journal of Catalysis. – Volume 39. – Issue 3. – 2018. – Pр. 390-394.

6. Fang Wang. Enhancing biogas production of corn stover by fast pyrolysis pretreatment, Fang Wang, Deli Zhang, Houkai Wu, Weiming Yi, Peng Fu, Yongjun Li, Zhihe Li // Bioresource Technology. – Volume 218. – 2016. – Pр. 731-736.

7. Karaeva J. Amaranth Inflorescence Wastes. Karaeva, J., Timofeeva, S., Islamova, S., Panchenko P., Bolshev V. // Bioenergy Potential, Biochar and Hydrocarbon Rich Bio-Oil Production Agriculture (Switzerland). – 2023, 13(2), 260.

8. Achitaev A. Life extension of AC-DC converters for hydrogen electrolysers operating as part of offshore wind turbines / Achitaev A., Suvorov A., Ilyushin P., Suslov K. // International Journal of Hydrogen Energy. – 2024, 51. – Pр. 137-159.

9. Marin G. E. Gas turbine operating as part of a thermal power plant with hydrogen storages / Marin G. E., Osipov B. M., Titov A. V., Akhmetshin A. R. // International Journal of Hydrogen Energy. – 2023, 48(86). – Pр. 33393-33400.

10. Marin G. Improving the Performance of Power Plants with Gas Turbine Units Proceedings. Marin G., Osipov B., Titov A., Shubina A., Novoselova M. 2022 4th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency, SUMMA 2022, 2022, Pages 832-836.

11. Kolbantseva D. L. Prospects for hydrogen production by the method of gasification of MSW at operating TPPs. D. L. Kolbantseva, D. A. Treshchev, K. S. Kalmykov, I. D. Anikina, M. A. Treshcheva, A. A. Kalyutik, Ya. A. Vladimirov, K. A. Naypak // International Journal of Hydrogen Energy, Volume 51, Part D, 2024. – Pр. 96-106.

12. Marin G. E. Prospects for implementation of hydrogen filling stations in the Russian Federation Marin G. E., Titov A. V., Akhmetshin A. R. // International Journal of Hydrogen Energy, 2024, 78, Pages 901-906.

13. Aminov R. Z. Estimating the system efficiency of the multifunctional hydrogen complex at nuclear power plants / R. Z. Aminov, A. N. Bairamov, M. V. Garievskii // International Journal of Hydrogen Energy, Volume 45, Issue 29, 2020, Pages 14614-14624.

14. Aminov R. Z. Assessment of technical and economic efficiency of a closed hydrogen cycle at NPP. Aminov R. Z., Egorov A. N. // International Journal of Hydrogen Energy, 2020, 45(32), Pages 15744-15751.

15. Marin G. E. Simulation of the operation of a gas turbine installation of a thermal power plant with a hydrogen fuel production system / Marin G. E., Osipov B. M., Titov A. V., Akhmetshin A. R. // International Journal of Hydrogen Energy, 2023, 48(12), Pages 4543-4550.

16. Xiafan Xu. A high-efficiency liquid hydrogen storage system cooled by a fuel-cell-driven refrigerator for hydrogen combustion heat recovery / Xiafan Xu, Hao Xu, Jianpeng Zheng, Liubiao Chen, Junjie Wang // Energy Conversion and Management. – Volume 226. – 2020, 113496. – ISSN 0196-8904.

17. W. Liu. Review of hydrogen storage in AB3 alloys targeting stationary fuel cell applications / W. Liu, C. J. Webb, E. Mac A. Gray // International Journal of Hydrogen Energy. – Volume 41, Issue 5, 2016, Pages 3485-3507, ISSN 0360-3199.

18. Ahmed M. Elberry. Large-scale compressed hydrogen storage as part of renewable electricity storage systems / Ahmed M. Elberry, Jagruti Thakur, Annukka Santasalo-Aarnio, Martti Larmi // International Journal of Hydrogen Energy. – Volume 46, Issue 29, 2021, Pages 15671-15690.

19. Madeleine McPherson. The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions / Madeleine McPherson, Nils Johnson // Manfred Strubegger, Applied Energy. – Volume 216, 2018, Pages 649-661.

20. Radoslaw Tarkowski. Underground hydrogen storage: Characteristics and prospects, Renewable and Sustainable Energy Reviews. – Volume 105, 2019, Pages86-94, ISSN 1364-0321.

21. Aman Verma. Life cycle assessment of hydrogen production from underground coal gasification / Aman Verma, Amit Kumar // Applied Energy. – Volume 147, 2015, Pages 556-568.

22. Younggeun Lee. Comparative techno-economic and quantitative risk analysis of hydrogen delivery infrastructure options / Younggeun Lee, Ung Lee, Kyeongsu Kim A. // International Journal of Hydrogen Energy. – Volume 46, Issue 27, 2021, Pages 14857-14870.

23. Ankica Kovač. Hydrogen in energy transition: A review, International. Ankica Kovač, Matej Paranos, Doria Marciuš // Journal of Hydrogen Energy. – Volume 46, Issue 16, 2021, Pages 10016-10035.

24. Morozov E. M. Comparison of notch geometries in local-strength analysis / Morozov E. M. Sapunov V. T. // Industrial Laboratory. – 1996. – Vol. 62, No. 2. – Pр. 113-116.

25. Morozov E. M. A concept of ultimate crack resistance Materials Science. – 1998. – Vol. 34, No. 5. – Pр. 709-713.

26. Matvienko Yu. G., Morozov E. M. Calculation of the energy J-integral for bodies with notches and cracks / Matvienko Yu. G. // International Journal of Fracture. – 2004. – Volume. 125, No. 3-4. – Pages 249-261.

27. Anderson T. L., Fracture Mechanics. Fundamentals and Application, Boca Raton: CRC, 2017 / Fracture Mechanics. Theory, Applications and Research, Robertson J. C., Ed., New York: Nova Science, 2017.

28. Andreas-Nizar Granitzer. Implementation and appraisal of stress recovery techniques for embedded finite elements with frictional contact / Andreas-Nizar Granitzer, Franz Tschuchnigg, Haris Felic, Paul Bonnier, Sandro Brasile, Computers and Geotechnics. – Volume 172, 2024, 106457.

29. Morozov E. M. Use of the finite-element method in fracture mechanics Soviet / Morozov E. M., G. P. Nikishkov // Materials Science. – 1983. – Volume. 18, No. 4. – Pages 299-314.

30. Sachenkov O. A. Implementation of contact interaction in a finite – element formulation / Sachenkov O. A., Mitryaikin V. I., Zaitseva T. A., Konoplev Y. G. // Applied Mathematical Sciences. – 2014. – Volume. 8, No. 157-160. – Pages 7889-7897.

31. Basar Y. Constitutive model and finite element formulation for large strain elasto-plastic analysis of shells / Basar Y., Itskov M. // Computational Mechanics. – 1999. – Volume. 23, No. 5-6. – Pages 466-481.

32. Cai C. Modeling of Material Damping Properties in ANSYS / Cai C., Zheng H., Khan M. S., Hung K. C. Defense Systems Division, Institute of High Performance Computing 89C Science Park Drive, Singapore Science Park I, Singapore 118261.

33. Cheng H. Development and application of a fully-coupled two-dimensional finite element approach to deformation and pressure diffusion around a bore-hole / Cheng H., Dusseault M. B. J. Can. Petr. Tech. – 1993. – Volume 32(10). – Pages 28-38.

34. Parish H. A. Critical survey of the J-node degenerated shell element with special emphasis on thin shell application and reduced integration // Computer Methods in Applied Mechanics and Engineering, 1979. – Volume 20. – № 3. – Pages 323-350.

35. Panda S. Finite element analysis of laminated composite plates / Panda S., Natarajan R. // International Journal for Numerical Methods in Engineering. – 1979. – Volume 14. – № 1. – Pages 69-79.

36. Surana Karan S. Transition finite elements for three-dimensional stress analysis // Int. J. Numer. Meth. Eng. – 1980. – Volume 15. – № 7. – Pages 991-1020.

37. Surana Karan S. Three dimensional solid-shell transition finite elements for heat conduction Comput. and Struct. – 1987. – Volume 26. – № 6. – Pages 941-950.

38. Yang H. A survey of recent shell finite elements / Yang H. T. Y., Saigal S., Masud A., Kapania R. K. // Int. J. for numerical methods in engineering. – 2000. – Volume 47. – Pages 101-127.

39. Sze K. Y. Three-dimensional continuum finite element models for plate/shell analysis Prog. Struct. Enging Mater. – 2002. – Volume 4. – Pages 400-407.

40. de Sousa R. J. A. A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: de Sousa R. J. A., Cardoso R. P. R. Part I – geometrically linear applications // Int. J. for Numerical Methods in Engineering. – 2005. – Volume 62, № 7. – Pages 952-977.

41. Park К. C., Stanley G. M. A curved shell element based on assumed natural-coordinate strain // J. Appl. Mech. – 1986. – Volume 53, № 2. – Pages 278-290.

42. Kara N. Three-dimensional finite element for thick shells of general shape / Kara N., Kumbasar N. // Int. J. for Physical and Engineering Sciences. – 2001. – Volume 52. – Pages 1-7.

43. Bonet J. and Wood R. D. 1997 Nonlinear continuum mechanics for finite element analysis (Cambridge University Press) 366.

44. Abdrakhmanova A. I. The algorithm of investigation of deformations of solids with contact interaction / Abdrakhmanova A. I., Sultanov L. U. // Journal of Physics: Conference Series, Volume. 1158, Issue 2. – Kazan: Institute of Physics Publishing, 2019. – P. 022001.

45. Davydov R. L. Numerical Algorithm for Investigating Large Elasto-Plastic Deformations / Davydov R. L., Sultanov L. U. // Journal of Engineering Physics and Thermophysics. – 2015. – Volume 88, No. 5. – Pages 1280-1288.

46. Ferreira C. A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem / Ferreira C., Parlett B. // Numerische Mathematik. – 2022. – Volume 150, No. 2. – Pages 373-422.

47. Kandic D. B. Explicit Construction of Hyperdominant Symmetric Matrices With Assigned Spectrum / Kandic D. B., Parlett B., Reljin B. D., Vasic P. // Linear Algebra and its Applications. – 1997. – Volume 258, No. 1-3. – Pages 41-51.


Рецензия

Для цитирования:


Марьин Г.Е., Клейдман О.В., Илюшин П.В., Ахметшин А.Р. Анализ напряжённо деформированного состояния корпуса ресивера водорода. Альтернативная энергетика и экология (ISJAEE). 2024;(12):143-157. https://doi.org/10.15518/isjaee.2024.12.143-157

For citation:


Marin G.E., Kleidman O.V., Ilyushin P.V., Akhmetshin A.R. Analysis of the stress-strain state of the hydrogen receiver housing. Alternative Energy and Ecology (ISJAEE). 2024;(12):143-157. (In Russ.) https://doi.org/10.15518/isjaee.2024.12.143-157

Просмотров: 31


ISSN 1608-8298 (Print)