

Environmental and economic comparison of hydrogen production technologies under low-carbon development strategy
https://doi.org/10.15518/isjaee.2025.02.056-070
Abstract
Hydrogen energy is a promising area of energy sector. According to forecasts, global demand of hydrogen will increase six times and reach 700 million tons per year by 2050. At the same time, modern environmental policy imposes restrictions on industrial processes, including hydrogen production, which necessitates the transition from traditional methods of hydrogen production from hydrocarbons to low-carbon and carbon-free technologies. In this paper, a comparative analysis of traditional (steam methane reforming, coal gasification) and alternative (plasma methane pyrolysis, water electrolysis) hydrogen production technologies on a number of criteria (technological, physicochemical, environmental, energetic and economic), to determine the prospects for their use under low-carbon development strategy.
About the Authors
E. Yu. TerekhovRussian Federation
Terekhov Evgenii Yurevich - postgraduate student. Researcher ID: HTT-4306-2023.
195251, St. Petersburg, st. Politekhnicheskaya, 29; +7 (952) 059-90-09
V. V. Elistratov
Russian Federation
Elistratov Viktor Vasilievich - Doc. of Sc., Prof., Professor, Honored Power Engineer of the Russian Federation.
195251, St. Petersburg, st. Politekhnicheskaya, 29
References
1. Net Zero by 2050. A Roadmap for the Global Energy Sector (2021) [Электронный ресурс]. Режим доступа: https://www.iea.org/reports/net-zero-by-2050 (Дата обращения: 25.11.2024).
2. Renewable Energy Sources and Climate Change Mitigation (2011) [Электронный ресурс]. Режим доступа: https://www.ipcc.ch/report/renewable-energysources-and-climate-change-mitigation/ (Дата обращения: 08.10.2024).
3. Global Energy and Climate Model. Scenario analysis of future energy trends (2024) [Электронный ресурс]. Режим доступа: https://www.iea.org/reports/global-energy-and-climate-model (Дата обращения: 22.01.2025).
4. World Energy Outlook 2024 [Электронный ресурс]. Режим доступа: https://www.iea.org/reports/world-energy-outlook-2024 (Дата обращения: 22.01.2025).
5. Global Energy Perspective 2023: Hydrogen outlook (2024) [Электронный ресурс]. Режим доступа: https://www.mckinsey.com/industries/oil-and-gas/our-insights/global-energy-perspective-2023-hydrogenoutlook (Дата обращения: 18.10.2024).
6. Hydrogen decarbonization pathways. A life-cycle assessment (2021) [Электронный ресурс]. Режим доступа: https://hydrogencouncil.com/wp-content/uploads/2021/01/Hydrogen-CouncilReport_Decarbonization-Pathways_Part-1-LifecycleAssessment.pdf (Дата обращения: 08.10.2024).
7. Nnabuife S. G. A Comparative Analysis of Different Hydrogen Production Methods and Their Environmental Impact / S. G. Nnabuife [et al.] // Clean Technologies. – 2023. – № 5. – Pp. 1344-1380. https://doi.org/10.3390/cleantechnol5040067
8. Global Hydrogen Review 2024 [Электронный ресурс]. Режим доступа: https://www.iea.org/reports/global-hydrogen-review-2024 (Дата обращения: 01.12.2024).
9. Hydrogen Insights 2023. The state of the global hydrogen economy, with a deep dive into renewable hydrogen cost evolution (2023) [Электронный ресурс]. Режим доступа: https://hydrogencouncil.com/en/hydrogen-insights-2023-december-update/ (Дата обращения: 29.11.2024).
10. Filippov S. P., Yaroslavtsev A. B. Hydrogen energy: development prospects and materials / S. P. Filippov, A. B. Yaroslavtsev // Russian Chemical Reviews. – 2021. – № 6. – Pp. 627-643. https://doi.org/10.1070/RCR5014
11. Green hydrogen: Energyzing the path to net zero (2023) [Электронный ресурс]. Режим доступа: https://www.researchgate.net/publication/371534124_Green_hydrogen_Energyzing_the_path_to_net_zero (Дата обращения: 18.10.2024).
12. Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1,5 °C Climate Goal (2020) [Электронный ресурс]. Режим доступа: https://www.irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction (Дата обращения: 10.07.2024).
13. Global energy transformation: A roadmap to 2050 (2019) [Электронный ресурс]. Режим доступа: https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019Edition (Дата обращения: 10.07.2024).
14. Agyekum E. B. A Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-Up and Its Role in Future Energy Generation / E. B. Agyekum [et al.] // Membranes. – 2022. – № 173. https://doi.org/10.3390/membranes12020173
15. Да Роза А. Возобновляемые источники энергии. Физико-технические основы: учебное пособие / А. да Роза; пер. с англ. под редакцией С. П. Малышенко, О. С. Попеля. – Долгопрудный: Издательский дом «Интеллект»; М.: Издательский дом МЭИ; 2010. – 704 с.: ил.
16. Velmozhina K. Production of Biohydrogen from Microalgae Biomass after Wastewater Treatment and Air Purification from CO2 / K. Velmozhina [et al.] // Processes. – 2023. – № 10. – 2978. https://doi.org/10.3390/pr11102978
17. Nikolaidis P. A comparative overview of hydrogen production processes / P. Nikolaidis, A. Poullikkas // Renewable and Sustainable Energy Reviews. – 2017. – № 67. – Рp. 597-611. https://doi.org/10.1016/j.rser.2016.09.044
18. Karasevich V. A. Technological aspects of Russian hydrogen energy development / V. A. Karasevich [et al.] //international Journal of Hydrogen Energy. – 2024. – № 57. – Рp. 1332-1338. https://doi.org/10.1016/j.ijhydene.2023.12.303
19. Hydrogen life-cycle analysis in support of clean hydrogen production (2022) [Электронный ресурс]. Режим доступа: https://publications.anl.gov/anlpubs/2022/10/179090.pdf (Дата обращения: 17.01.2025).
20. Da Costa Labanca A. R. Carbon black and hydrogen production process analysis / A. R. Da Costa Labanca //international Journal of Hydrogen Energy. – 2020. – № 45. – Рp. 25698-25707. https://doi.org/10.1016/j.ijhydene.2020.03.081
21. ГОСТ Р 58048-2017. Трансфер технологий. Методические указания по оценке уровня зрелости технологий. – Введ. 2018-06-01. – М.: Стандартинформ, 2018. – 37 с.
22. Pinsky R. Comparative review of hydrogen production technologies for nuclear hybrid energy systems / R. Pinsky [et al.] // Progress in Nuclear Energy. – 2020. – № 123. – 103317. https://doi.org/10.1016/j.pnucene.2020.103317
23. Hassan N. Recent review and evaluation of green hydrogen production via water electrolysis for a sustainable and clean energy society / N. Hassan [et al.] //international Journal of Hydrogen Energy. – 2023. – № 52. – Рp. 420-441. https://doi.org/10.1016/j.ijhydene.2023.09.068
24. Li J. «The carbon footprint and cost of coalbased hydrogen production with and without carbon capture and storage technology in China / J. Li [et al.] // Journal of Cleaner Production. – 2022. – № 362. – 132514. https://doi.org/10.1016/j.jclepro.2022.132514
25. Установки плазменного пиролиза природного газа и углеводородов PLAZARIUM PPS [Электронный ресурс]. Режим доступа: https://www.plazarium.com/ru/products/plasma-pyrolysis-units/plazarium-pps (Дата обращения: 09.10.2024).
26. Sánchez-Bastardo N. Methane Pyrolysis for Zero-Emission Hydrogen Production: A Potential Bridge Technology from Fossil Fuels to a Renewable and Sustainable Hydrogen Economy / N. Sánchez-Bastardo [et al.] //industrial & Engineering Chemistry Research. – 2021. – № 32. – Рp. 11855-11881. https://doi.org/10.1021/acs.iecr.1c01679
27. Wnukowski M. Methane Pyrolysis with the Use of Plasma: Review of Plasma Reactors and Process Products / M. Wnukowski // Energies. – 2023. – № 18, 6441. https://doi.org/10.3390/en16186441
28. Franco A., Giovannini C. Recent and Future Advances in Water Electrolysis for Green Hydrogen Generation: Critical Analysis and Perspectives / A. Franco, C. Giovannini // Sustainability. – 2023. – № 24. – 16917. https://doi.org/10.3390/su152416917 ETP Clean Energy Technology Guide (2024)
29. [Электронный ресурс]. Режим доступа: https://www.iea.org/data-and-statistics/data-tools/etp-clean-energy-technology-guide?selectedCCTag=Hydrogen&selectedVCStep=Production&selectedSector=Hydrogen (Дата обращения: 23.01.2025).
30. Comparison of the emissions intensity of different hydrogen production routes, 2021 [Электронный ресурс]. Режим доступа: https://www.iea.org/data-and-statistics/charts/comparison-of-the-emissions-intensity-of-different-hydrogen-production-routes-2021 (Дата обращения: 16.10.2024).
31. Martínez-Rodríguez A., Abánades A. Comparative Analysis of Energy and Exergy Performance of Hydrogen Production Methods / A. Martínez-Rodríguez, A. Abánades// Entropy. – 2020. – № 11. – Рp. 1286. https://doi.org/10.3390/e22111286
32. HTGR-integrated Hydrogen Production via Steam Methane Reforming (SMR) Process Analysis [Электронный ресурс]. Режим доступа: https://art.inl.gov/NGNP/INL%20Documents/Year%202010/HTGR-Integrated%20Hydrogen%20Production%20via%20Steam%20Methane%20Reforming%20(SMR)%20Process%20Analysis%20rev%200.pdf (Дата обращения: 20.01.2025).
33. Yang Y. Analysis of Hydrogen Production Potential Based on Resources Situation in China / Y. Yang [et al.] // E3S Web of Conferences. – 2019. – № 118. – 03021. https://doi.org/10.1051/e3sconf/201911803021
34. Pashchenko D. Industrial furnaces with thermochemical waste-heat recuperation by coal gasification / D. Pashchenko // Energy. – 2021. – № 221. – 119864. https://doi.org/10.1016/j.energy.2021.119864
35. Peng X. D. Analysis of the thermal efficiency limit of the steam methane reforming process / X. D. Peng //industrial & Engineering Chemistry Research. – 2012. – № 50. – Рp. 16385-16392. https://doi.org/10.1021/ie3002843
36. Плазменный пиролиз метана [Электронный ресурс]. Режим доступа: https://keldysh-space.ru/nasha-deyatelnost/proizvodstvo/plazmennyy-piroliz-metana/ (Дата обращения: 15.01.2025).
37. Fulcheri L. An energy-efficient plasma methane pyrolysis process for high yields of carbon black and hydrogen / L. Fulcheri [et al.] // Hydrogen Energy. – 2022. – № 8. – Рp. 2920-2928. https://doi.org/10.1016/j.ijhydene.2022.10.144
38. Timmerberg S. Hydrogen and hydrogen-derived fuels through methane decomposition of natural gas – GHG emissions and costs / S. Timmerberg [et al.] // Energy Conversion and Management. – 2020. – № 7. – 100043. https://doi.org/10.1016/j.ecmx.2020.100043
39. Technical Targets for Proton Exchange Membrane Electrolysis [Электронный ресурс]. Режим доступа: https://www.energy.gov/eere/fuelcells/technical-targets-proton-exchange-membrane-electrolysis (Дата обращения: 23.01.2025).
40. Virah-Sawmy D. Ignore variability, overestimate hydrogen production – Quantifying the effects of electrolyzer efficiency curves on hydrogen production from renewable energy sources / D. VirahSawmy [et al.] //international Journal of Hydrogen Energy. – 2024. – № 72, pp. 49-59. https://doi.org/10.1016/j.ijhydene.2024.05.360
41. Technical Targets for Liquid Alkaline Electrolysis [Электронный ресурс]. Режим доступа: https://www.energy.gov/eere/fuelcells/technical-targets-liq uid-alkaline-electrolysis (Дата обращения: 23.01.2025).
42. Xia Y. Efficiency and consistency enhancement for alkaline electrolyzers driven by renewable energy sources / Y. Xia [et al.] // Communications Engineering. – 2023. – № 2. – 22. https://doi.org/10.1038/s44172-023-00070-7
43. Villarreal Vives M. Techno-economic analysis of large-scale green hydrogen production and storage / M. Villarreal Vives [et al.] // Applied Energy. – 2023. – № 346. – 121333. https://doi.org/10.1016/j.apener-gy.2023.121333
44. Терехов Е. Ю., Елистратов В. В. Потенциал производства водорода методом электролиза воды на объектах атомной энергетики России / Е. Ю. Терехов, В. В. Елистратов // X международная научно-практическая конференция молодых ученых и специалистов атомной отрасли «Команда»: сборник тезисов. Часть 2. – Москва: ООО «Издательский дом Недра», 2023. – 212 с.
45. Franzmann D. Green hydrogen cost-potentials for global trade / D. Franzmann [et al.] //international Journal of Hydrogen Energy. – 2023. – № 85. – Рp. 3306233076. https://doi.org/10.48550/arXiv.2303.00314
46. Marín Arcos J. M. The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production / J. M. Marín Arcos [et al.] // Gases. – 2023. – № 1. – Рp. 25-46. https://doi.org/10.3390/gases3010002
47. Веселов Ф., Соляник А. Экономика производства водорода с учетом экспорта и российского рынка / Ф. Веселов, А. Соляник // Энергетическая политика. – 2022. – № 170, с. 58-67.
48. Technical Targets for High Temperature Electrolysis [Электронный ресурс]. Режим доступа: https://www.energy.gov/eere/fuelcells/technical-targets-high-temperature-electrolysis (Дата обращения: 24.01.2025).
49. Skakov M. Hydrogen production by methane pyrolysis in the microwave discharge plasma / M. Skakov [et al.] // AIMS Energy. – 2024. – № 3. – Рp. 548-560. https://doi.org/10.3934/energy.2024026
50. Chen G. Plasma pyrolysis for a sustainable hydrogen economy / G. Chen [et al.] // Nature Reviews Materials. – 2022. – № 7. – Рp. 333-334. https://doi.org/10.1038/s41578-022-00439-8
51. Keescher F. Low-carbon hydrogen production via electron beam plasma methane pyrolysis: Techno-economic analysis and carbon footprint assessment / F. Keescher [et al.] //international Journal of Hydrogen Energy. – 2021. – № 38. – Рp. 19897-19912. https://doi.org/10.1016/j.ijhydene.2021.03.114
52. Митрова Т. Водородная экономика – путь к низкоуглеродному развитию / Т. Митрова, Ю. Мельников, Д. Чугунов. – М.: ЦЭМШУ СКОЛКОВО, 2019. – 62 с.
53. Assessment of hydrogen delivery options (2022) [Электронный ресурс]. Режим доступа: https://publications.jrc.ec.europa.eu/repository/handle/JRC130442 (Дата обращения: 17.01.2025).
54. Elistratov V., Denisov R. Development of isolated energy systems based on renewable energy sources and hydrogen storage //international Journal of Hydrogen Energy. – 15 August 2023. – Volume 48. – Issue 70. – Pр. 27059-27067. https://doi.org/10.1016/j.ijhydene.2023.03.122
Review
For citations:
Terekhov E.Yu., Elistratov V.V. Environmental and economic comparison of hydrogen production technologies under low-carbon development strategy. Alternative Energy and Ecology (ISJAEE). 2025;(2):56-70. (In Russ.) https://doi.org/10.15518/isjaee.2025.02.056-070