Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Hydrogen degradation of materials and changes in the operating mode of compressor station equipment as factors of increased risks and costs during transportation of hydrogen-containing gas through main gas pipelines

https://doi.org/10.15518/isjaee.2025.02.100-120

Abstract

The problems of changing the operating modes of the main technological equipment of compressor stations (CS) of the existing gas transmission system, as well as the degradation of the mechanical properties of the CS equipment material in the case of transportation of methane-hydrogen mixtures or hydrogen at elevated pressure, are considered. The features of operation of a centrifugal compressor during pipeline transportation of hydrogen-containing mixtures are considered. Due to the peculiarities of the physico-chemical properties of hydrogen, which lead to an increase in the flow rate, an increase in the rotational speed of the compressor rotor is required, which is limited by regulatory requirements. When used with hydrogen-containing mixtures, the risk of embrittlement of the rotor material increases. The results of tests to assess the resistance to hydrogen embrittlement of structural steels of different classes, which are characteristic materials of CS equipment, are presented. The main patterns of changes in strength, ductility, and crack resistance of steels at hydrogen concentrations from 5% to 100% and pressures of 10 MPa have been established. In a hydrogencontaining environment, high-strength steels are softened and strongly embrittled.

About the Authors

A. G. Ishkov
PJSC Gazprom
Russian Federation

Ishkov Alexander Gavrilovich - Professor of the UNESCO Department of Green Chemistry for Sustainable Development of the Russian University of Chemical Technology n. a. D. I. Mendeleev. Place of work: PSJC Gazprom, Deputy Head of Department – Head of Directorate. РИНЦ: Author ID: 98720.

197229, Saint Petersburg, ext. ter. city of Lakhta-Olgino municipal district, Lakhtinsky ave., 2, room 3, building 1



O. V. Zhdaneev
Federal State Budgetary Institution of Science of the Order of the Red Banner of Labor A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences (INHS RAS); Yugorsky State University
Russian Federation

Zhdaneev Oleg Valerevich - Leading Researcher Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences (INHS RAS). Professor of the Higher Oil School, Yugra State University. Place of employment: Advisor to the General Director/Senior Advisor to the General Director of the Federal State Budgetary Institution «Russian Energy Agency» of the Ministry of Energy of the Russian Federation/ JSC «Center for Operational Services», Author ID: 130118.

119991, GSP-1, Moscow, Leninsky Prospekt, 29; 628007, Khanty-Mansiysk, Chekhov St., 16



K. V. Romanov
PJSC Gazprom; Gazprom hydrogen LLC
Russian Federation

Romanov Konstantin Vladimirovich - Deputy Head of the Department of PJSC Gazprom, Executive Secretary of the Coordination Committee of PJSC Gazprom for Rational Natural Resources Management, General Director of LLC Gazprom Hydrogen. Candidate of Economic Sciences. Author ID: 232244.

197229, Saint Petersburg, ext. ter. city of Lakhta-Olgino municipal district, Lakhtinsky ave., 2, room 3, building 1; 142717, Moscow region, Razvilka, Leninsky municip., Gazovikov st., 15, bld. 15/1



E. A. Koloshkin
PJSC Gazprom
Russian Federation

Koloshkin Evgeny Alexandrovich - Chief Technologist at PJSC Gazprom, Scientific Secretary of Section No. 19 of the Scientific and Technical Council of PJSC Gazprom. Author ID: 1081274.

197229, Saint Petersburg, ext. ter. city of Lakhta-Olgino municipal district, Lakhtinsky ave., 2, room 3, building 1



S. Yu. Nastich
Gazprom VNIIGAZ LLC
Russian Federation

Nastich Sеrgei Yurievich - Chief Researcher of the Materials Research Laboratory of the Tubular Products Development Center of Gazprom VNIIGAZ LLC, laureate of the Russian Federation Government Prize in Science and Technology. Author ID: 393089

195112, St. Petersburg, ext. ter., Malaya Okhta municipal district, 45 Malookhtinsky Ave., letter A, room. 2-N, office 812



V. А. Egorov
Gazprom VNIIGAZ LLC
Russian Federation

Egorov Vladimir Alexandrovich - Head of the Center for Development of Pipe Products, Gazprom VNIIGAZ LLC. Author ID: 859368.

195112, St. Petersburg, ext. ter., Malaya Okhta municipal district, 45 Malookhtinsky Ave., letter A, room. 2-N, office 812



A. B. Arabey
Gazprom VNIIGAZ LLC
Russian Federation

Arabey Andrey Borisovich - Chief Researcher of the Tubular Products Development Center of Gazprom VNIIGAZ LLC, laureate of the Russian Federation Government Prize in Science and Technology. AuthorID: 506858.

195112, St. Petersburg, ext. ter., Malaya Okhta municipal district, 45 Malookhtinsky Ave., letter A, room. 2-N, office 812



A. Yu. Mikhalev
Gazprom VNIIGAZ LLC
Russian Federation

Mikhalev Andrey Yurievich - Deputy Head of the Division of PJSC Gazprom. Place of work: PJSC Gazprom. Author ID: 696513. Candidate of Technical Sciences.

195112, St. Petersburg, ext. ter., Malaya Okhta municipal district, 45 Malookhtinsky Ave., letter A, room. 2-N, office 812



V. A. Lopatkin
Gazprom VNIIGAZ LLC
Russian Federation

Lopatkin Vyacheslav Alexandrovich - Head of the Materials Research Laboratory, Center for Development of Pipe Products, Gazprom VNIIGAZ LLC. 16410852, AuthorID: 582849.

195112, St. Petersburg, ext. ter., Malaya Okhta municipal district, 45 Malookhtinsky Ave., letter A, room. 2-N, office 812



References

1. Ishkov A. G., Zhdanev O. V., Romanov K. V., Koloshkin E. A., Kulikov D. V., Mikhailov A. M., Lugvishchuk D. S., Bogdan I. B., Maslova E. V. Methodol Ogical Approaches to Carbon Foot Print Assessment and Certification of Low Carbon Hydrogen //international Journal of Hydrogen Energy. – 2024. – Vol. 96. – Pp. 147-159. – ISSN 0360-3199. – DOI: 10.1016/J.ijhydeene.2024.11.181.

2. Zhdanev O. V., Karasevich V. A., Moskvin A. V., Khakimov R. R. Application of Renewable and Hydrogen Energy in the Arctic by the example of modernizing оf the Arctic settlement of Khatanga //international Journal of Hydrogen Energy. – 2024. – Vol. 95. – Pр. 267-277. – ISSN 0360-3199. – DOI: 10.1016/J.ijhydeene.2024.11.183.

3. Khakimov R., Moskvin A., Zhdaneev O. Hydrogen as a Key Technology for Long-Term & Seasonal Energy Storage Applications //international Journal of Hydrogen Energy. – 2024. – Vol. 68. – Pр. 374-381. – ISSN 0360-3199. – DOI: 10.1016/J.Ijhydeene.2024.04.066.

4. Bazhenov S., Dobrovolsky Yu., Maximov A., Zhdaneev O.V. Key Challenges for the Development of the Hydrogen Industry in the Russian Federal // Sustainable Energy Technologies and Assessments. – 2022. – Vol. 54. – Article 102867. – ISSN 2213-1388. – DOI: 10.1016/J.Seta.2022.102867.

5. PetroChemical Industry in Russia: state of the Art and Prospects for Development / E. A. Golysheva, O. V. Zhdaneev, V. V. Korenev [et al.] // Russian Journal of AppLid Hemistry. – 2020. – Vol. 93, no. 10. – Pр. 1596-1603. – DOI: 10.1134/S107042722010158. – Edn RWFSMQ.

6. Zhdaneev O., Frolov K. Technological and Institute Priorities of the Oil and Gas Complex of the Russian Federation in the World Energy Transition //international Journal of Hydrogen Energy. – 2024. – Vol. 58. – Pр. 1418-1428. – DOI: 10.1016/J.ijhydeene.2024.01.285.

7. Ishkov A. G., Nesterov N. B., Romanov K. V., Koloshkin E. A., Nastich S. Yu., Egorov V. A., Lopatkin V. A. The risks of using the gas transmission system for hydrogen energy // Energy policy. – 2024. – No. 2 (193). – Pp. 56-67.

8. Topolski K., Reznicek E. P., Erdener B. C., San Marchi C. W., Ronevich J. A., Fring L., Simmons K., Guerra Fernandez O. J., Hodge B. -M., Chung M. Hydrogen blending into natural gas pipeline infrastructure: Review of the state of technology. Golden, CO: National Renewable Energy Laboratory, 2022. Nrel/TP5400-81704. https://www.nrel.gov/docs/fy23osti/81704.pdf

9. Mahajan D., Tan K., Venkatesh T., Kileti P., Clayton C. R. Hydrogen Blending in Gas Pipeline Networks – A Review. // Energies. – 2022. – No. 15, 3582. – 32 p. https://doi.org/10.3390/en15103582

10. Islam A., Alam T., Shebley N., Edmonson K., Burns D., Hernandez M. Hydrogen Blending in Natural Gas Pipelines: A Comprehece Review of Material Compatibly and Safethity and Safethity Ions //international Journal of Hydrogen Energy. – No. 93 (2024), 1429-1461. https://doi.org/10.1016/j.ijhydeene.2024.10.384

11. Martin P., Ocko I. B., Esquivel-Elizondo S. et al. A Review of Challenges with Using the Natural Gas System for Hydrogen // Energy Sci Eng. 2024; 12: 39954009. DOI: 10.1002/ESE3.1861

12. Global Hydrogen Review 2022 //iEA: officer. website. URL: https: // www.IEA.org/reports/global-hydrogen-reView-2022 (accessed: 01.24.2025).

13. Krutko A. A., Skokov D. A., Koloshkin E. A., Afonina A. I., Mazilov V. A. Pipeliness of hydrogen in the context of technology, regulation and contract practice. Part 1 // Gas Industry. – 2022. – No. 12, 842. – Pp. 64-70.

14. Krutko A. A., Skokov D. A., Koloshkin E. A., Afonina A. I., Mazilov V. A. Pipeliness of hydrogen in the context of technology, regulation and contractual practice. Part 2 // Gas Industry. – 2023. – No. 1, 843. – Pp. 70-76.

15. Lyapichev D. M., Matyukha D. E., Salnikov S. Yu., Schurovsky V. A., Chernikova E. A. Features of the transportation of hydrogen -containing natural gases through existing gas pipelines // Turbines and diesel engines. – 2023. – No. 1 (106). – Pp. 58-61.

16. Golunov N. N., Lurie M. V., Musailov I. T. Transportation of hydrogen through gas pipelines in the form of a meta-hydrogen mixture // Territory «Neftegaz». – 2021. – No. 1-2. – Pp. 74-82.

17. Kolachev B. A. Hydrogen fragility of metals. – M.: Metallurgy, 1985. – 216 p.

18. Liu Q., Atrens A. A Critical Review of the Influence of Hydrogen on the Mechanical Properties of Medium-Strength Steels // De Gruyter. Corrosion Review. – 2013. – No. 31 (3-6). – Pp. 85-103.

19. Li X., Ma X., Zhang J. et al. Review of Hydrogen Embrittent in Metals: Hydrogen Difusion, Hydrogen Characterization, Hydrogen Embrittenism and Prevention // Acta Metallurgica Sinica (English Letters). – 2020. – No. 33. – Pp. 759-773.

20. Bhadeshia H. K. D. H. Prevention of Hydrogen Embrittenet in Steels //iSIJ International. – 2016. – Vol. 56, no. 1. – Pp. 24-36.

21. Archakov Yu. I. Hydrogen corrosion of steel. – M.: Metallurgy, 1985. – 192 p.

22. Nastich S. Yu., Lopatkin V. A. The influence of gaseous hydrogen on the mechanical properties of metal pipes of the main gas pipelines // Metallurg. – 2022. – No. 6. – Pp. 17-27.

23. The official website of Gazprom Transgaz Stavropol LLC. https://stavropol-tr.gazprom.ru/press/ proekt-azbuka-proizvodstva/kompressornay-stantsyya/

24. Zhedulov S. A., Arabi A. B., I. Ryakhovsky Modeling Corrosion-Mechanical Destruction of Trubnaya Steel // Scientific and Technical Collection «News Gas Science». – 2022. – No 1 (50). – Pp. 107-119.

25. Alekseeva O. K., Kozlov S. I., Fateev V. N. Transporting of hydrogen // Transport on alternative fuel. – 2011. – No. 3 (21). – Pp. 18-24.

26. Baklanov A. V. The possibility of using meta-hydrogen fuel in converted gas turbine engines for power plants // Siberian aerospace Journal. – 2021. – V. 22. – No. 1. – Pp. 82-93. DOI: 10.31772/2712-8970-2021-22-1-82-93.

27. Lam P. S., Sindelar R. L., Duncan A. J., Adams T. M. Literature Survey of Gaseous Hydrogen Effects on the Mechanical Properties of Carbon and Low Allloy Steels // J. Pressusure Vessel Tessel T Echnol. AUG 2009, 131 (4): 041408 (14 Pages). https://doi.org/10.1115/1.3141435

28. Gas-transmitting unit GPA-32 «Ladoga» / Ed. Director of the Institute of Energy of the FGAOU in «SPBPU», d. f. -m. n., prof., CHL-corr. RAS Yu. K. Petreni. – St. Petersburg: A multidisciplinary printing house «Fast Color», 2023. – 196 p. ISBN 978-5-6047002-1-1

29. Adasooriya N. D., Tucho W. M., Holm E., Arthun T., Hansen V., Solheim K. G., Hemmingsen T. Effect of Hydrogen on Mechanical Properties and Fratensitic Carbon Steel Under Queenched and Tempered Conditions // Materials Science and Engineering: A. – 2021. – Volume 803, 28 January 2021. – 140495.

30. SK M. H., Overfelt R. A. Strain Rate Effects on Hydrogen Embrittenment Characteristics of Notched 4340 Steel // Mater. Res. SOC. Symp. ProC. – 2014. – Vol. 15. – Materials Research Society. DOI: 10.1557/OPL2014.436

31. Stasyuk S. Z. Study of hydrogen resistance of steel type X16N6 with a different carbon content // Metal and casting of Ukraine. – 2014. – No. 4 (251). – Pp. 38-42.

32. Fu Z. H., Yang B. J., Shan M. I., Li T., Zhu Z. Y., Ma C. P., Zhang X., Gou G. Q., Wang Z. R., Gao W. Hydrogen Embrittenor of Sus301l-Mt Stainses Eel Laser-ARC HYBRID WELDED JOINT LOCALIZED Zones // Corrosion Science. – 2020. – Volume 164, march 2020. – 108337.

33. Murakami Y., Kanezaki T., Mine Y., Matsuoka S. Hydrogen Embrittenism in Fatigue of Austenitic Stainess Steels // Metallurgical and Materials Transactions A. – 2008. – Volume 39A, June 2008. – Pp. 1327-1339.

34. Astafurova E. G., Melnikov E. V., Astafurov S. V., Ratochka I. V., Mishin I. P., Mayer G. G., Moskvina V. A., Zakharov G. N., Moskvina, Zakharov, G. N., Smirnov A. I., Bataev V. A. The laws of hydrogen bucusing of austenitic stainless steels with an ultramelic grain structure of different morphology // Physical Mesomechanics. – 2018. – V. 21. – No. 2. – Pp. 103-117.

35. Nastich S. Yu., Lopatkin V. A., Egorov V. A., Arabi A. B., Mikhalev A. Yu. The influence of the structure of the metal of the pipes and their welded compounds on the resistance of destruction during testing in hydrogen // Metallurg. – 2024. – No. 8. – Pp. 9-18.

36. Fomina D. D., Poplov V. Z. New structural and functional materials and coatings resistant to hydrogen – containing media // Bulletin of PNIPU. Chemical technology and biotechnology. – 2022. – No. 2. – Pp. 55-72.

37. Dobrotvolysky A. M., Dumrauf V. V., Romanova L. M., Valkovskaya S. A., Dukman A. S. Corrosion resistance of structural materials under the operating conditions of reactors of isoprene synthesis // Chemical technique. – 2016. – No. 1. – Рр. 32-34.


Review

For citations:


Ishkov A.G., Zhdaneev O.V., Romanov K.V., Koloshkin E.A., Nastich S.Yu., Egorov V.А., Arabey A.B., Mikhalev A.Yu., Lopatkin V.A. Hydrogen degradation of materials and changes in the operating mode of compressor station equipment as factors of increased risks and costs during transportation of hydrogen-containing gas through main gas pipelines. Alternative Energy and Ecology (ISJAEE). 2025;(2):100-120. (In Russ.) https://doi.org/10.15518/isjaee.2025.02.100-120

Views: 123


ISSN 1608-8298 (Print)