

Обзор влияния распределенной генерации на электроэнергетическую систему
https://doi.org/10.15518/isjaee.2022.03.021-038
Аннотация
В 2020 году суммарная установленная мощность объектов генерации на основе возобновляемых источников энергии (без учета гидроэнергетических объектов) в мире составила около 1437 ГВт, из которых 651 ГВт — пришлось на ветровые электростанции, а 627 ГВт — на солнечные электростанции. Рост установленной мощности объектов распределенной генерации является своеобразным ответом на такие явления как: увеличение энергопотребления, глобальное потепление и ряд других экологических проблем. С технической точки зрения этому во многом способствует развитие технологий в области силовой полупроводниковой техники.
Однако при масштабном внедрении объектов распределенной генерации на основе возобновляемых источников энергии традиционная электроэнергетическая система неизбежно сталкивается с новыми вызовами, связанными с обеспечением надежной и устойчивой работы энергосистемы в целом. В частности, распределенная генерация оказывает влияние на процессы, протекающие в энергосистеме, влияет на параметры режима работы энергосистемы и баланс генерируемой и потребляемой мощности, изменяет величину и направление перетоков мощности и токов короткого замыкания. Это, в свою очередь, обусловливает необходимость пересмотра уставок релейной защиты и автоматики традиционной электроэнергетической системы, а также согласования работы данного оборудования с системой автоматического управления объектов распределенной генерации.
Среди ключевых научных направлений выделяют задачу по определению оптимального размера и размещения объекта распределенной генерации. Основная цель для проведения данной оптимизации заключается в снижении суммарных потерь мощности, а также в сокращении эксплуатационных и капитальных затрат, в повышении уровня напряжения в узлах схемы до допустимых значений нормированного диапазона. Кроме того, оптимальное размещение распределенной генерации позволяет осуществлять эффективное планирование режимов работы электроэнергетической системы в целом и электростанций в частности, особенно на основе возобновляемых источников энергии, режим работы которых во многом определяется суточными и сезонными погодными изменениями и может резко изменяться, в отсутствие обеспечения требуемых показателей электроснабжения конечных потребителей.
В статье выполнен анализ влияния распределенной генерации на потери мощности, уровень напряжения, поддержание баланса мощности и частотное регулирование, а также на величину и направление токов короткого замыкания. Кроме того, осуществлено рассмотрение различных оптимизационных критериев, ограничительных условий и методов решения обозначенной выше оптимизационной задачи распределенной генерации. Данное исследование поможет системному оператору, электросетевым и инвестиционным компаниям нашей страны сформировать целевую функцию и ограничительные условия для выбора оптимального размещения объекта распределенной генерации, позволяющего обеспечить электроснабжение конечных потребителей при минимальных затратах.
Об авторах
Р. А. УфаРоссия
Уфа Руслан Александрович, кандидат технических наук, доцент, доцент отделения электроэнергетики и электротехники, Инженерная школа энергетики
634050, Томск, пр. Ленина, 30
Я. Ю. Малькова
Россия
Малькова Яна Юрьевна, ассистент отделения электроэнергетики и электротехники, Инженерная школа энергетики
634050, Томск, пр. Ленина, 30
В. Е. Рудник
Россия
Рудник Владимир Евгеньевич, кандидат технических наук, ассистент отделения электроэнергетики и электротехники, Инженерная школа энергетики
634050, Томск, пр. Ленина, 30
Список литературы
1. International Energy Agency. Electricity Market Report - July 2021. https://www.iea.org/reports/electricity-market-reportjuly-2021
2. T. Ackerman, G. Anderson, L. Solder, Distributed generation: a definition, Electric Powwer system Research, 57 (2011), 195-204.
3. V. Vita, T. Alimardan, L. Ekonomou, The Impact of Distributed Generation in the Distribution Networks' Voltage Profile and Energy Losses, in IEEE European Modelling Symposium (EMS), IEEE, 2015, 260-265.
4. A. Ghafouri, J. Milimonfared, G.B. Gharehpetian, Coordinated control of distributed energy resources and conventional power plants for frequency control of power systems. IEEE Trans Smart Grid, 6(2015), 104-114.
5. C. Chapman, G. Verbic, Dynamic distributed energy resource allocation for load-side emergency reserve provision, in Proceedings of IEEE innovative smart grid technologies – Asia, IEEE, 2016, 1-6.
6. P. Chiradeja, Benefit of Distributed Generation: A Line Loss Reduction Analysis, in Proceedings of IEEE/PES Transmission and DistributionConference & Exhibition: Asia and PacificDalian, IEEE, 2005, 1-5.
7. S. Sinsel, R. Riemke, V. Hoffmann, Challenges and solution technologies for the integration of variable renewable energy sources– a review, Renewable Energy, 145 (2020), 2271-2285,
8. F. Dawood, M. Anda, G.M. Shafiullah, Hydrogen production for energy: An overview, International Journal of Hydrogen Energy, 45(2020), 3847-3869.
9. J.O. Abe, A.P.I. Popoola, E. Ajenifuja, O.M. Popoola, Hydrogen energy, economy and storage: Review and recommendation, International Journal of Hydrogen Energy, 44(2019), 15072-15086.
10. J. Rocabert, R. Capó-Misut, R. S. MuñozAguilar, J. I. Candela and P. Rodriguez, "Control of Energy Storage System Integrating Electrochemical Batteries and Supercapacitors for Grid-Connected Applications, IEEE Transactions on Industry Applications, 55(2019), 1853-1862.
11. Salman Hajiaghasi, Ahmad Salemnia, Mohsen Hamzeh, Hybrid energy storage system for microgrids applications: A review, Journal of Energy Storage, 21(2019), 543-570.
12. B.P. Tarasov, P.V. Fursikov, A.A. Volodin, M.S. Bocharnikov, Yu.Ya Shimkus, A.M. Kashin, V.A. Yartys, S. Chidziva, S. Pasupathi, M.V. Lototskyy, Metal hydride hydrogen storage and compression systems for energy storage technologies, International Journal of Hydrogen Energy, 46(2021), 13647-13657.
13. L. Bartela, D. Katla, and A. Skorek-Osikowska, Evaluation of conceptual electrolysis-based energy storage systems using gas expanders, International Journal of Hydrogen Energy, 46(2021), 20171-20182.
14. D. M. Ali, Energy capacity and economic viability assessment of the renewable hydrogen energy storage as a balancing mechanism in addressing the electric system integration issues inherent with variable renewable energy resources, IET Conference on Reliability of Transmission and Distribution Networks, London, 2012, 1-7.
15. G. Gahleitner, Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications, International Journal of Hydrogen Energy, 38(2013), 2039-2061.
16. T. Adefarati, R.C. Bansal, Integration of Renewable Distributed Generators into the Distribution System: A Review, IET Renewable Power Generation, 10(2016), 873-884.
17. F. Gonzalez-Longatt, C. Fortoul, Review of Distributed Generation Concept: Attempt of Unification, Renewable Energy and Power Quality Journal, 1(2005), 281-284.
18. R. P. Schultz, Impacts of new technology and generation and storage processes on power system stability and operability. In Proceedings of DOE / ORNL Conference «Research needs for the Effective Integration of New Technologies into the Electric Utility», 1983, 193–219.
19. Impact of embedded generation on distribution networks. Institution of Electrical Engineers (IEE). Digest: 1996/191, London, UK, 1996.
20. K. N. Bangash, M. E. A. Farrag, A. H. Osman, Manage Reverse Power Flow and Fault Current Level in LV Network with High Penetration of Small Scale Solar and Wind Power Generation, in Proceedings of 53rd International Universities Power Engineering Conference (UPEC), 2018, 1-6.
21. N. Hatziargyriou, Microgrids: Architectures and Control, Wiley-IEEE Press, 2014, 344 p.
22. R. Sharma, M. Singh, D. K. Jain, Power system stability analysis with large penetration of distributed generation, in Proceedings of 6th IEEE Power India International Conference, 2014, 1-6.
23. S. R. Mohamed, P. A. Jeyanthy, D. Devaraj, Investigation on the impact of high-penetration of PV generation on transient stability, in Proceedings of IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), 2017, 1-6.
24. H. O. R. Howlader, M. M. Sediqi, A. M. Ibrahimi, T. Senjyu, Optimal Thermal Unit Commitment for Solving Duck Curve Problem by Introducing CSP, PSH and Demand Response, IEEE Access, 6 (2018), 4834-4844.
25. P. Denholm, M. O’Connell, G. Brinkman, J. Jorgenson, Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart, National Renewable Energy Laboratory, Prepared under Task No. TM13.5020, 2015, 1-38.
26. California Independent System Operator, FAST FACTS, 2016, https://www.caiso.com/Documents/FlexibleResourcesHelpRenewables_FastFacts.pdf
27. A. Ulbig, G. Andersson, Analyzing operational flexibility of electric power systems, in Proceedings of Power Systems Computation Conference (PSCC), 2014, 1-8.
28. P. Denholm, Energy storage to reduce renewable energy curtailment, in Proceedings of IEEE Power and Energy Society General Meeting, 2012, 1-4.
29. P. Denholm, M. Hand, Grid flexibility and storage required to achieve very high penetration of variable renewable electricity, Energy Policy, 39(2011), 1817-1830.
30. N. Navid, G. Rosenwald, Market Solutions for Managing Ramp Flexibility With High Penetration of Renewable Resource, IEEE Transactions. Sustainable Energy, vol. 3(2012), 784-790.
31. R. Bhat, M. Begovic, I. Kim and J. Crittenden, Effects of PV on Conventional Generation, in Proceedings of 47th Hawaii International Conference on System Sciences, 2014, 2380-2387.
32. M. Akrami, Doostizadeh and F. Aminifar, Power system flexibility: an overview of emergence to evolution, Journal of Modern Power Systems and Clean Energy, vol. 7(2019), 987-1007.
33. T. Cioara, I. Anghel, M. Antal, S. Crisan, I. Salomie, Data center optimization methodology to maximize the usage of locally produced renewable energy, in Proceedings of Sustainable Internet and ICT for Sustainability (SustainIT), 2015, 1-8.
34. S. Mohajeryami, P. Schwarz, and P. T. Baboli, Including the behavioral aspects of customers in demand response model: Real time pricing versus peak time rebate, in Proceedings of North American Power Symposium (NAPS), 2015, 1-6.
35. A. Majzoobi, A. Khodaei, Application of microgrids in addressing distribution network net-load ramping, 2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), USA, 2016, 1-5.
36. D.B. Prakash, C. Lakshminarayana, Multiple DG placements in radial distribution system for multi objectives using Whale Optimization Algorithm, Alexandria Engineering Journal, 57(2018), 2797-2806.
37. S. Remha, S. Chettih, S. Arif, Optimal placement of different DG units type in distribution networks based on voltage stability maximization and minimization of power losses, in Proceedings of 8th International Conference on Modelling, Identification and Control (ICMIC-2016), 2016, 1-7.
38. M. Tsli, S. Papathanassiou, A review of grid code technical requirements for wind farms, IET Renew Power Generation, 3(2009), 308-332.
39. IEEE Standard for Interconnecting Distributed Resources with ElectricPower systems, IEEE Std., 1547–2003, 2003, 1-16.
40. V. Hengsritawat, T. Tayjasanant, Impacts of load models and power factor control on optimal sizing of photovoltaic distributed generators in a distribution system, IEEJ Transactions on Electrical and Electronic Engineering, 7(2012), 567-573.
41. V. H. M. Quezada, J. R. Abbad, T. G. S. Roman, Assessment of energy distribution losses for increasing penetration of distributed generation, IEEE Transactions On Power Systems, 21(2006), 533-540.
42. G. Antonova, M. Nardi, A. Scott, M. Pesin, Distributed generation and its impact on power grids and microgrids protection, in Proceedings of 65th Annual Conference for Protective Relay Engineers, TX, 2012, 152-161.
43. M. Begovic, A. Pregelj, A. Rohatgi and D. Novosel, Impact of renewable distributed generation on power systems, in Proceedings of the 34th Annual Hawaii International Conference on System Sciences, 2001, 654-663.
44. S. Hussain, M. Sharkh, S. Hussain, Impact studies of distributed generation on power quality and protection setup of an existing distribution network, in Proceedings of the SPEEDAM, 2010, 1243-1246.
45. S. A. M. Javadian, M.-R. Haghifam, M. Fotuhi Firoozabad, S.M.T. Bathaee, Analysis of protection system’s risk in distribution networks with DG, International Journal of Electrical Power & Energy Systems, 44(2013), 688-695.
46. S. Conti, Analysis of distribution network protection issues in presence of dispersed generation, Electric Power Systems Research, 79(2009), 49-56.
47. A. F. Contreras, G. A. Ramos Mario, R. Contreras, Methodology and design of an Adaptive overcurrent protection for distribution system with DG, International Journal of Engineering & Technology, 12(2012), 128-136.
48. H. Zayandehroodi, M. Azah, Sh. Hussain, M. Marjan, Impact of distributed generations on power system protection performance, International Journal of the Physical Sciences, 6(2011),3873-3881,
49. D. Menghua, Q. Jun, Y. Zhenping, Y. Tao, Z. Jiaqing, Z. Junchao, L. Liyi, A research of feeder protection 10kV distribution networks including distributed generation, in Proceedings of the China International Conference on Electricity Distribution (CICED), 2012, 1-4.
50. J. A. P. Lopes, Integration of dispersed generation on distribution networks - impact studies, in Proceedings of IEEE Power Engineering Society Winter Meeting, 2002, 323-328.
51. M. Dewadasa, A. Ghosh, G. Ledwich, Protection of distributed generation connected networks with coordination of overcurrent relays, in Proceedings of the 37th Annual Conference of the IEEE Industrial Electronics Society, Australia, 2011, 924–929.
52. H. H. Zeineldin, H. M. Sharaf, D. K. Ibrahim, E. E. A. El-Zahab, Optimal Protection Coordination for Meshed Distribution Systems With DG Using Dual Setting Directional Over-Current Relays, IEEE Transactions on Smart Grid, 6(2015), 115-123.
53. H. Lin, J. M. Guerrero, J. C. Vasquez, C. Liu, Adaptive distance protection for microgrids, 41st Annual Conference of the IEEE Industrial Electronics Society (IECON 2015), Japan, 2015, 725–730.
54. Z. Liu, H. K. Hoidalen, M. M. Saha, An intelligent coordinated protection and control strategy for distribution network with wind generation integration, Journal of Power and Energy Systems, 2(2016), 23-30.
55. S. Biswas, V. Centeno, A communication based infeed correction method for distance protection in distribution systems, North American Power Symposium, USA, 2017, 1-5,
56. A. M. Tsimtsios, V. C. Nikolaidis, Setting zerosequence compensation factor in distance relays protecting distribtion systems, IEEE Transactions on Power Delivery, 33(2018), 1236-1246.
57. K. Pandakov, H. K. Hoidalen, Distance protection with fault impedance compensation for distribution network with DG, IEEE PES ISGT-Europe, Italy, 2017, 1-6.
58. C. Jecu, B. Raison, R. Caire, P. Alibert, P. Deschamps, O. Chilard, S. Grenard, Protection scheme based on non communicating relays deployed on MV distribution grid, PowerTech, France, 2013, 1-6.
59. M. Khederzadeh, H. Javadi, S. M. Ali Mousavi, Source type impact of distributed generation (DG) on the distribution protection, in Proceedings of the 10th IET International Conference on Developments in Power System Protection (DPSP 2010), UK, 2010, 1-5.
60. P. P. Barker, R. W. De Mello, Determining the impact of distributed generation on power systems. I. Radial distribution systems, in Proceedings of the Power Engineering Society Summer Meeting (Cat. No.00CH37134), Seattle, 2000, 1645-1656.
61. Sh. M. Ismael, Sh. H. E. A. Aleem, A. Y. Abdelaziz, A. F. Zobaa, State-of-the-art of hosting capacity in modern power systems with distributed generation, Renewable Energy, 130(2019), 1002-1020.
62. N. Nimpitiwan, G. T. Heydt, R. Ayyanar, and S. Suryanarayanan, Fault current contribution from synchronous machine and inverter based distributed generators, IEEE Transactions on Power Delivery, 22(2007), 634–641.
63. Z. Yong, L. Zaiwen, Review of FRT requirements for integration of wind energy in China and Europe, in Proceedings of the 2nd International Symposium on Power Electronics for Distributed Generation Systems, Hefei, 2010, 589-592.
64. P. R. Patil, A. A. Bhole, A review on enhancing fault ride-through capability of distributed generation in a microgrid, in Proceedings of the Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, 2017, 1-6.
65. G. D. Rockefeller, C. L. Wagner, J. R. Linders, K. L. Hicks, D. T. Rizy, Adaptive transmission relaying concepts for improved performance, IEEE Transactions on Power Delivery, 3(1988), 1446– 1458.
66. N. A. Bari and S. D. Jawale, Smart and adaptive protection scheme for distribution network with distributed generation: A scoping review, in Proceedings of the International Conference on Energy Efficient Technologies for Sustainability (ICEETS), Nagercoil, 2016, 569-572.
67. E. Nsengiyumva, M. J. Saulo, G. N. Nyakoe, Adaptive Protection Scheme in Distribution Networks Considering Intermittency of DG Using Fuzzy Logic Controller, International Journal of Engineering Research and Technology, 11(2018), 1179-1198.
68. R. Sitharthan, M. Geethanjali, T. K. S. Pandy, Adaptive protection scheme for smart microgrid with electronically coupled distributed generations, Alexandria Engineering Journal, 55(2016), 2539-2550.
69. H. Lin, J. M. Guerrero, Ch. Jia, Zh.Tan, J. C. Vasquez, Ch. Liu, Adaptive overcurrent protection for microgrids in extensive distribution systems in Proceedings of the 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, 2016, 4042- 4047.
70. N. Rezaei, M. Haghifam, Protection Scheme for a Distribution System with Distributed Generation Using Neural Networks, International Journal of Electrical Power & Energy Systems, 30(2008), 235–241.
71. S. A. Khaparde, N. Warke, S. H. Agarwal, An adaptive approach in distance protection using an artificial neural network, Electric Power Systems Research, 37(1996), 39-44.
72. S. A. M. Javadian, M. R. Haghifam, S. M. T. Bathaee, M. F. Firoozabad, Adaptive centralized protection scheme for distribution systems with DG using risk analysis for protective devices placement, International Journal of Electrical Power & Energy Systems, 44(2013), 337-345.
73. S. Shen, D. Lin, H. Wang, P. Hu, K. Jiang, D. Lin, B. He, An adaptive protection scheme for distribution systems with DGs based on optimized Thevenin equivalent parameters estimation, IEEE Transactions on Power Delivery, 32(2017), 411-419.
74. N. Zhou, J. Wu, Q. Wang, Three-phase shortcircuit current calculation of power systems with high penetration of VSC-based renewable energy, Energies, 11(2018), 1-25.
75. L. V. Strezoski, M. D. Prica, Short-circuit analysis in large-scale distribution systems with high penetration of distributed generators, in IEEE/CAA Journal of Automatica Sinica, vol. 4(2017), 243-251.
76. M. Ghanaatian, S. Lotfifard, Sparsity-based short-circuit analysis of power distribution systems with inverter interfaced distributed generators, IEEE Transactions Power System, 34(2019), 4857-4868.
77. Ya. Ates, A. R. Boynuegri, M. Uzunoglu, A. Nadar, R. Yumurtac, O. Erdinc, N. G. Paterakis, C. P. S. Joao, Adaptive Protection Scheme for a Distribution System Considering Grid-Connected and Islanded Modes of Operation, Energies, 9(2016), 1-18.
78. J.-A. Jiang, Chih-Wen Liu, Ch.-Sh. Chen, A novel adaptive PMU-based transmission-line relay design and EMTP simulation results, IEEE Transactions on Power Delivery, 17(2002), 930-937.
79. M. Zanjani, K. Mazlumi, I. Kamwa, Application of μPMUs for Adaptive Protection of Overcurrent Relays in Microgrids, IET Generation, Transmission and Distribution, 12(2018), 4061-4068.
80. V. A. Papaspiliotopoulos, G. N. Korres, V. A. Kleftakis, N. D. Hatziargyriou, Hardware-In-the-Loop Design and Optimal Setting of Adaptive Protection Schemes for Distribution Systems With Distributed Generation, IEEE Transactions on Power Delivery, 32(2017), 393-400.
81. OPAL-RT, Hypersim – Power system real-time simulator, http://www.opal-rt.com, retrieved Jan. 2021.
82. A. Suvorov, A. Gusev, N. Ruban, M. Andreev, A. Askarov, R. Ufa, I. Razzhivin, A. Kievets, J. Bay, Potential Application of HRTSim for Comprehensive Simulation of Large-Scale Power Systems with Distributed Generation, International Journal of Emerging Electric Power Systems, 20(2019), 1-13.
83. A. A. Suvorov, A. A. Zaki Diab, A. S. Gusev, M. V. Andreev, N. Yu. Ruban, A. B. Askarov, R. A. Ufa, I. A. Razzhivin, A. V. Kievets, Y. D. Bay, V. E. Rudnik, R. Aboelsaud, A. Ibrahim, A. Saad Al-Sumaiti, Comprehensive Validation of Transient Stability Calculations in Electric Power Systems and HardwareSoftware Tool for Its Implementation, IEEE Access, 8(2020), 136071-136091.
84. K. Abookazemi, M. Y. Hassan, M. S. Majid, A review on optimal placement methods of distribution generation sources, in Proceedings of the IEEE International Conference on Power and Energy, Kuala Lumpur, 2010, 712-716.
85. R.A. Ufa, Y.Y. Malkova, A.L. Gusev, N.Y. Ruban, A.S. Vasilev, Algorithm for optimal pairing of res and hydrogen energy storage systems, International Journal of Hydrogen Energy, 46(2021), 33659-33669,
86. P. Gupta, M. Pandit, D. P. Kothari, A review on optimal sizing and siting of distributed generation system: Integrating distributed generation into the grid, in Proceedings of the 6th IEEE Power India International Conference (PIICON), Delhi, 2014, 1-6.
87. D. Gautam, N. Mithulananthan, Optimal DG placement in deregulated electricity market, Electric Power Systems Research, 77(2007), 1627-1636.
88. T. Niknam, R. Azizipanah-Abarghooee, M. R. Narimani, A new multi objective optimization approach based on TLBO for location of automatic voltage regulators in distribution systems, Engineering Applications of Artificial Intelligence, 25(2012), 1577- 1588.
89. M. J. Hadidian-Moghaddam, S. Arabi-Nowdeh, M. Bigdeli, D. Azizian, A multi-objective optimal sizing and siting of distributed generation using ant lion optimization technique, Ain Shams Engineering Journal, 9(2018), 2101-2109.
90. M. R. AlRashidi, M. F. Al-Hajri, Optimal planning of multiple distributed generation sources in distribution networks: A new approach, Energy Conversion and Management, 52(2011), 3301-3308.
91. H. L. Willis, Analytical methods and rules of thumb for modeling DG-distribution interaction, in Proceedings of the Power Engineering Society Summer Meeting (Cat. No.00CH37134), Seattle, WA, 2000, pp. 1643-1644
92. M. A. Abdelkader, M. A. Elshahed, Z.H. Osman, An analytical formula for multiple DGs allocations to reduce distribution system losses, Alexandria Engineering Journal, 58(2019), 1265-1280.
93. J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, 1983, 375 p.
94. G. P. Harrison, A. R.Wallace, Optimal power flow evaluation of distribution network capacity for the connection of distributed generation, IEE Proceedings of generation transmission, distribution, 152(2005), 115– 122.
95. A. Keane, M. O'Malley, Optimal allocation of embedded generation on distribution networks, IEEE Transactions on Power Systems, 20(2005), 1640-1646.
96. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Publishing Company, 1989, 412.
97. P. Dinakara Prasad Reddy, V.C. Veera Reddy, T.Gowri Manohara, Optimal renewable resources placement in distribution networks by combined power loss index and whale optimization algorithms, Journal of Electrical Systems and Information Technology, 173(2017), 1–18.
98. S. Ali, S. M. Abd Elazim, A. Y. Abdelaziz, Ant Lion Optimization Algorithm for optimal location and sizing of renewable distributed generations, Renewable Energy, 101(2017), 1311–1324.
99. Yu. Thangaraj, K. Ravi, Multi-objective simultaneous DG and DSTATCOM allocation in radial distribution networks using cuckoo searching algorithm, Alexandria Engineering Journal, 57(2018), 1-14.
100. A. Abdelaziz, S. Mekhamer, R. Shehata, Solution of distributed generation allocation problem using a novel method, Indonesian Journal of Electrical Engineering and Computer Science, 15(2019), 554-564.
101. H. Prasad, K. Subbaramaiah, P. Sujatha, Cost–benefit analysis for optimal DG placement in distribution systems by using elephant herding optimization algorithm, Renewables: Wind, Water, and Solar, 6(2017), 1-12.
102. M. C. V. Suresh, E. J. Belwin, Optimal DG placement for benefit maximization in distribution networks by using Dragonfly algorithm, Renewables: Wind, Water, and Solar, 5(2018), 1-8.
Рецензия
Для цитирования:
Уфа Р.А., Малькова Я.Ю., Рудник В.Е. Обзор влияния распределенной генерации на электроэнергетическую систему. Альтернативная энергетика и экология (ISJAEE). 2022;(3):21-38. https://doi.org/10.15518/isjaee.2022.03.021-038
For citation:
Ufa R.A., Malkova Y.Yu., Rudnik V.E. A review on distributed generation impacts on electric power system. Alternative Energy and Ecology (ISJAEE). 2022;(3):21-38. https://doi.org/10.15518/isjaee.2022.03.021-038