Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Анализ требований по мощности и энергопотреблению многофункционального гелиотехнического устройства

https://doi.org/10.15518/isjaee.2025.04.126-133

Аннотация

Важно использовать возобновляемые источники энергии для обеспечения автономных потребителей непрерывной энергией с повышенной эффективностью. В данной статье представлены результаты эксперимента, проведенного на многофункциональном гелиотехническом устройстве и определены общие требования к мощности и энергопотреблению устройства. Также есть подбор оптимальной солнечной панели, размера аккумулятора, инвертора, контроллера заряда для устройства. Многофункциональное гелиотехническое устройство позволяет экономить электроэнергию в 1,5-2,0 раза. Устройство может широко использоваться в любое время года, особенно в сельской местности, вдали от централизованного энергоснабжения. Разработанное Многофункциональное гелиотехническое устройство рекомендуется для специализированных фермерских хозяйств и частных предприятий.

Об авторе

Олмосбек Анвар углиа Кузиев
Каршинский государственный технический университет
Узбекистан

Докторант.

180100, Карши, проспект Мустакиллик, д. 225



Список литературы

1. Fahim H., Jakir H., Maria R. and Sazzad R. (2010). Design and Development of a Cost Effective Urban Residential Solar PV System. Electrical and Electronic Engineering Department of Bangladesh University of Engineering and Technology.

2. Chima I. U., Unamba-Opara I. C., Ugwu C. C., Udebuani A. C., Okoli C. G., Opara M. N., Uchegbu M. C. and Okoli I. C. Biosecurity and disinfection controls of poulrty microbial pathogen infections in Nigeria // J. Poult. Res. – 2012. – Vol. 2 (1): 5-17.

3. Brake J. and Sheldon B. W. Effect of a Quaternary Ammonium Sanitizer For Hatching Eggs On Their Contamination, Permeability, Water Loss And Hatchability // Poult. Sci. – 1990. – Vol. 69: 517-525.

4. Ayivor W. F. and Hellins C. E. Poultry keeping in tropics. Oxford University press, London, second edition. – 1986. – Pp. 40-45.

5. FSEC (1999). Installing Photovoltaic System. Florida Solar Energy Center. University of Central Florida.

6. Graham P. J., Kranenburg P. A., Krog T. C. and Schwab C. C. (2012). «Project Omoverhi: a thermal storage solution». Mechanical Engineering Senior Theses. Paper 5.

7. Hernández J. M. (2016). «The Small Photovoltaic Installation for a Selfsustaining House». Faculty of Electrical Engineering and Computing, University of Zagreb.

8. Joseph E. S. and Michael J. D. (2011). Helpful Hints for Teacher on Incubation and Embryology of the Chick. Cooperative Extension System, University of Connecticut.

9. Kitheka G. M. and Maundu K. G. (2012). Design of a Solar Poultry Egg Incubator. Department of Mechanical and Manufacturing Engineering, School of Engineering, University of Nairobi.

10. Kuye S. I., Adekunle N. O., Adetunji O. R. and Olaleye D. O. (2008). Design and Construction of Solar Incubator. Proceedings of the Third Conference on Science and National Development.

11. Исаченко В. П., Осипова В. А., Сукомел А. С. Теплопередача: учебник для вузов, изд. 4-е, перераб. и доп. – М., Энергоиздат, 1981. – 416 с.

12. Сахин В. В. Теплообмен в однородной среде (теплопередача): учебное пособие / В. В. Сахин. – Балт. гос. техн. ун-т. – СПб., 2017. – 121 с.

13. Сахин В. В. Конвективный теплообмен в однородной среде (теплоотдача): учебное пособие. – Балт. гос. техн. ун-т. СПб., 2013. – 224 с.

14. Вукалович М. П. Таблицы термодинамических свойств воды и водяного пара. – М.: Госэнерго, 1963. – 374 с.

15. Кузиев О. А. (2024). Расчет теплопотерь через стенки камеры многофункционального гелиотехнического устройства: УДК: 662.997. Инновационные технологии, 55(3):58-65. https://innotex-journal.uz/index.php/journal/article/view/18.

16. Узаков Ғ., Эргашев Ш. Х., Кузиев О. А., Алиярова Л. А. (2023). Моделирование теплового баланса инкубаторной камеры с солнечным коллектором в нестационарном режиме // Инновационные технологии. 50(2):22-27.

17. Firfiris V. K., Kaffe Z. D., Kalamaras S. D., Lithourgidis A. A., Martzopoulou A. G., Kotsopoulos T. A. A Prototype Passive Solar Drying System: Exploitation of the Solar Chimney Effect for the Drying of Potato and Banana // Appl. Sci. 2022; 12:11784. https://doi.org/10.3390/app122211784.

18. Rizalman, Mohd & Moung, Erwin & Dargham, Jamal & Jamain, Zuhair & Mohd. Yaakub, Nurulazah & Farzamnia, Ali. A review of solar drying technology for agricultural produce // Indonesian Journal of Electrical Engineering and Computer Science. 2023; 30:1407-1419. 10.11591/ijeecs.v30.i3.

19. Fernandez, Lisete & Tavares P. A Review on Solar Drying Devices: Heat Transfer, Air Movement and Type of Chambers // Solar. 2024; 4:15-42. https://doi.org/10.3390/solar4010002.

20. Militaru, Mirela & Postelnicu, Elena & Chiţoiu, Mihai & Vladut, Valentin. Solar Energy Use in Dryers as an Alternative Energy Source in Agriculture. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca // Agriculture. 2010; 67: https://doi.org/10.15835/buasvmcn-agr:5031.

21. Abdel-Azeem F. Effect of Using Different Pre-Storage Incubation Warming Times and Storage Periods on Hatchability of Japanese Quail Eggs and Subsequent Growth of Chicks // Egypt. Poult. Sci. – 2009. – Vol. 29 (3). – Pp. 761-775.

22. Abdulkarim H. T. (2012). Techno-Economic Analysis of Solar Energy for Electric Power Generation in Nigeria. Department of Electrical/Electronics. College of Education, Minna, Niger State, Nigeria.

23. Ackland N. R., Hinton, M. R. and Denmeade K. R. Controlled Formaldehyde Fumigation System. Applied and Environmental Microbiology. – 1980. – Vol. 39 (3). – Pp. 480-487.

24. Adeosun O. J. (1997). Further Work on the Development (Design and Construction) of a Low-Cost Incubator. An Unpublished B. Sci Project. Department of Agricultural Engineering, Faculty of Technology, Obafemi Awolowo University, Ile-Ife, Nigeria.

25. Adewunmi B. A. Development of a Free Convention Kerosene Fueled Incubator. Transaction of the Nigeria Society of Engineers. – 1998. – Vol. 33(2). – Pp. 30-40.

26. Adewunmi B. A. and Falayi F. R. Design, Fabrication and Testing of a charcoal fueled incubator. Nig. Journal Animal Production. – 1999. – Vol. 26. – Pp. 111-114.

27. Benjamin N., Oye N. D. Modification of the Design of Poultry Incubator // International Journal of Application or Innovation in Engineering & Management (IJAIEM), – 2012. – Volume 1. – Issue 4. – Pp. 90-102.

28. Автоматизация технологических процессов / Бородин И. Ф., Недилько Н. М. – М.: Агропромиздат, 1985.

29. Разработка проекта автоматизации технологических процессов. – Мн.: БГАТУ, 2003. – 217 с.

30. Смирнов Б. В. Птицеводство от А до Я / Б. В.Смирнов, В. С. Смирнов. – Ростов н/Д: Феникс, 2005. – 248 с.

31. Сидоренко Л. И. Способ инкубации яиц / Л. И. Сидоренко, В. И. Щербатов, С. А. Хасанова, В. В. Киппель // Патент на изобретение № 2338370 по заявке № 2007113741, 2008.

32. Хасанова С. А. Инкубация крупного яйца / С. А.Хасанова, В. В. // Животноводство России. – 2008. – 28 c.


Рецензия

Для цитирования:


Кузиев О.А. Анализ требований по мощности и энергопотреблению многофункционального гелиотехнического устройства. Альтернативная энергетика и экология (ISJAEE). 2025;(4):126-133. https://doi.org/10.15518/isjaee.2025.04.126-133

For citation:


Quziyev O.A. Analysis of power and energy consumption requirements of a multifunctional solar device. Alternative Energy and Ecology (ISJAEE). 2025;(4):126-133. (In Russ.) https://doi.org/10.15518/isjaee.2025.04.126-133

Просмотров: 10


ISSN 1608-8298 (Print)