Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Development of a concept for the use of gas turbine units in the integration of nuclear power plants with a hydrogen complex

https://doi.org/10.15518/isjaee.2025.05.043-063

Abstract

The article proposes and substantiates the concept of combining a nuclear power plant (NPP) with a hydrogen complex and a gas turbine unit (GTU) for the efficient conversion of “failure” (undemanded) NPP electricity into peak electricity. The hydrogen complex is a means of providing NPPs with a base load in the context of their involvement in regulating the daily unevenness of the electric load with an increase in their share in the energy system, as well as taking into account the decarbonization strategy. Undemanded electricity is used for water electrolysis to produce hydrogen (and oxygen), which is then burned in an oxygen environment in the GTU combustion chamber during peak demand hours. The fundamental process flow diagram of the hydrogen complex is presented, including a two-stage hydrogen-oxygen combustion chamber based on ultra-high-temperature ceramics as part of the GTU. It has been preliminarily established that the start-stop mode of the GTU is the most economical in terms of hydrogen consumption. The expediency of abandoning compressors as part of the hydrogen complex due to the use of high-pressure electrolysis is substantiated. A review of international experience is provided, confirming the technological readiness for the use of hydrogen gas turbines.

About the Authors

A. N. Bairamov
Federal State Budgetary Scientific Institution Federal Research Center «Saratov Scientific Center of the Russian Academy of Sciences»
Russian Federation

Bairamov Artem Nicolaevich, Department of Energy Problems of SSC RAS, Leading Researcher

Scopus Author ID: 35224451800

Research ID: P-6565-2017

410028, Saratov, st. Rabochaya, 24



A. S. Egorov
Federal State Budgetary Educational Institution of Higher Education «Saratov State Technical University named after Yu. A. Gagarin»
Russian Federation

Egorov Artem Sergeevich, Department of Thermal and Nuclear Power Engineering named after A. I. Andryushchenko, Graduate student

410054, Saratov, st. Politekhnicheskaya, 77



References

1. Аминов Р. З. Комплексная оценка эффективности системы производства и транспортировки водорода / Р. З. Аминов, А. Н. Байрамов, С. П. Филиппов // Альтернативная энергетика и экология (ISJAEE). – 2024. – № 10. – С. 167-199.

2. Энергетическая стратегия Российской Федерации на период до 2050 года: распоряжение Правительства Российской Федерации от 12.04.2025 № 908-р. – Москва: Официальный сайт Правительства РФ, 2025.

3. Байрамов А. Н. Эффективность интеграции АЭС с водородным энергетическим комплексом: специальность 05.14.01 «Энергетические системы и комплексы»: диссертация на соискание ученой степени доктора технических наук / Байрамов Артем Николаевич; Саратовский государственный технический университет. – Саратов, 2010. – 142 с.

4. Аминов Р. З. Обоснование типа дополнительной турбинной установки при комбинировании АЭС с водородным энергетическим комплексом / Р. З. Аминов, А. Н. Байрамов // Труды Академэнерго. – 2015. – № 3. – С. 67.

5. Байрамов, А. Н. Разработка и обоснование нового принципа комбинирования АЭС с водородным комплексом / А. Н. Байрамов, Д. А. Макаров // Альтернативная энергетика и экология (ISJAEE). – 2024. – № 5(422). – С. 30-50.

6. Патент № 2758644 Российская Федерация, МПК G 21D 5/16, F22B 1/26. Система сжигания водорода в кислороде в закрученном потоке повышенной безопасности с использованием ультра-высокотемпературных керамических материалов для перегрева рабочего тела в паротурбинном цикле атомной электрической станции: № 2021112668/07: заявлено 29.04.2021: опубликовано 01.11.2021 / Байрамов А. Н.; заявитель и патентообладатель Байрамов А. Н. – 17 с.: ил.

7. Патент № 2709237 Российская Федерация. № 2018134273: заявлено 27.09.2018: опубликовано 17.12.2019, Бюл. № 35.

8. Портнова Е. Н. Получение ультравысокотемпературных керамических материалов на основе диборидов циркония и гафния: специальность 05.16.06: диссертация на соискание ученой степени кандидата технических наук / Портнова Екатерина Николаевна; научный руководитель В. З. Пойлов. – Пермь, 2016. – 137 с.

9. Ультравысокотемпературная керамика для авиационно-космической техники / О. Н. Григорьев, И. А. Подчерняева, А. Д. Панасюк и др. // Двигатели и энергоустановки аэрокосмических летательных аппаратов. – 2012. – № 8(95). – С. 119-128.

10. Казо И. Ф. Механические свойства реакционно-спечённой керамики на основе диборидов гафния и титана / И. Ф. Казо, С. В. Чернобук, П. П. Когутюк // Наноносители, наноматериалы, нанотехнологии. – 2012. – Т. 10, № 1. – С. 27-38.

11. Ткаченко Л. А. Защитные жаропрочные покрытия углеродных материалов / Л. А. Ткаченко, А. Ю. Шаулов, А. А. Берлин // Неорганические материалы. – 2012. – Т. 48, № 3. – С. 261-271.

12. Получение ультравысокотемпературных материалов спеканием композиций на основе боридов циркония и гафния / Ю. Б. Лямин, Е. Н. Прямилова, В. З. Пойлов и др. // Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. – 2016. – Т. 18, № 1. – С. 147-158.

13. Получение ультравысокотемпературной керамики на основе боридов циркония и гафния искровым плазменным спеканием / В. З. Пойлов, Е. Н. Прямилова, Ю. Б. Лямин и др. // Журнал неорганической химии. – 2016. – Т. 61, № 2. – С. 160-166.

14. Прямилова Е. Н. Термохимическая стойкость керамики на основе боридов циркония и гафния / Е. Н. Прямилова, В. З. Пойлов // Вестник Пермского национального исследовательского политехнического университета. Химическая технология и биотехнология. – 2014. – № 4. – С. 55-66.

15. Симоненко Е. П. Новые подходы к синтезу тугоплавких нанокристаллических карбидов и оксидов по получению ультравысокотемпературных керамических материалов на основе диборида гафния: специальность 02.00.01: диссертация на соискание ученой степени доктора химических наук / Симоненко Елизавета Петровна; научный консультант В. Г. Севастьянов. – Москва, 2016. – 219 с.

16. Аминов Р. З. Экспериментальная оценка доли непрореагировавшего водорода при сжигании в среде кислорода / Р. З. Аминов, А. И. Счастливцев, А. Н. Байрамов // Альтернативная энергетика и экология (ISJAEE). – 2020. – № 7-18(330-341). – С. 68-79.

17. Aminov R. Z. Experimental Evaluation of the Composition of the Steam Generated during Hydrogen Combustion in Oxygen / R. Z. Aminov, A. I. Schastlivtsev, A. N. Bayramov // High Temperature. – 2020. – Vol. 58, № 3. – Pp. 410-416.

18. Aminov R. Z. Experimental results of the study of underburned hydrogen during burning in oxygen medium / R. Z. Aminov, A. I. Schastlivtsev, A. N. Bayramov // International Journal of Hydrogen Energy. – 2022. – Vol. 47, Issue 65. – Pp. 28176-28187.

19. Hancke R. High-pressure PEM water electrolyser performance up to 180 bar differential pressure / R. Hancke, P. Bujlo, T. Holm, Ø. Ulleberg // International Journal of Hydrogen Energy. – 2024. – Vol. 49, Issue 5. – Pp. 2345-2358.

20. Егоров А. Н. Разработка и обоснование системы сжигания водорода в кислороде с использованием рециркуляции на основе экспериментального исследования / А. Н. Егоров, А. Н. Байрамов, А. И. Счастливцев // Альтернативная энергетика и экология (ISJAEE). – 2024. – № 5(422). – С. 51-67.

21. Аминов Р. З. Оценка эффективности участия АЭС в покрытии пиковых электрических нагрузок на основе водородных технологий / Р. З. Аминов, А. Н. Егоров, А. Н. Байрамов // Теплоэнергетика. – 2024. – № 2. – С. 1-18. – DOI: 10.56304/S0040363624020012.

22. Bade G. Capstone Turbine expands product line to include hydrogen-fueled microturbines / G. Bade // Journal of Power Engineering. – 2018. – Vol. 42, № 5. – Pp. 87-93.

23. Capobianco M. Hydrogen-rich fuel combustion in microturbine systems: Performance and emissions analysis / M. Capobianco, A. Traverso // Applied Energy. – 2019. – Vol. 237. – Pp. 603-615.

24. Kumar S. Integration of hydrogen in microturbine systems: Technical challenges and solutions / S. Kumar, R. P. Saini // International Journal of Hydrogen Energy. – 2020. – Vol. 45, Issue 23. – Pp. 12876-12889.

25. Sharma P. Capstone’s commercial deployment of hydrogen microturbines: Case study of Australian integration / P. Sharma, R. H. Williams // Renewable and Sustainable Energy Reviews. – 2019. – Vol. 112. – Pp. 109-118.

26. Thompson J. Capstone Green Energy: Market transformation through hydrogen technology integration / J. Thompson, V. Ramaswamy // Energy Policy. – 2021. – Vol. 149. – Article 112110.

27. Davidson F. T. Thirty-year evolution of hydrogen-compatible gas turbines: A retrospective analysis / F. T. Davidson, A. Elgowainy // International Journal of Hydrogen Energy. – 2022. – Vol. 47, Issue 8. – Pp. 5372-5389.

28. Goldmeer J. Hydrogen-capable gas turbines: Technical specifications and operational experience / J. Goldmeer, J. Catillaz // Journal of Engineering for Gas Turbines and Power. – 2021. – Vol. 143, № 4. – Article 041010.

29. Taamallah S. Performance evaluation of the GE 7HA.02 turbine in hydrogen-natural gas blends / S. Taamallah, K. Vogiatzaki // Applied Energy. – 2020. – Vol. 276. – Article 115463.

30. Goldmeer J. GE Gas Turbines: Hydrogen Experience and Capabilities / J. Goldmeer // GE Power White Paper. – 2022.

31. Clark R. Long Ridge Energy Terminal: Multimodal logistics hub and energy transition showcase / R. Clark, P. Mitchell // Energy Research & Social Science. – 2019. – Vol. 62. – Article 101354.

32. Li Y. Low-carbon energy transition through multi-functional energy hubs: Case study of Long Ridge Energy Terminal / Y. Li, I. Dincer // Renewable and Sustainable Energy Reviews. – 2021. – Vol. 145. – Article 111098.

33. Barone G. Hydrogen blending in conventional gas turbines: Operating experience at Long Ridge Energy Terminal / G. Barone, C. Manfredi // International Journal of Hydrogen Energy. – 2020. – Vol. 45, Issue 58. – Pp. 33782-33797.

34. Jackson T. Pathways to hydrogen economy: Lessons from Long Ridge Energy Terminal implementation / T. Jackson, R. Agrawal // Energy Policy. – 2022. – Vol. 160. – Article 112662.

35. Valerio G. Commercial viability assessment of hydrogen-fueled gas turbines: Comparative analysis of four market-ready models / G. Valerio, M. C. Romano // Applied Energy. – 2021. – Vol. 298. – Article 117223.

36. Mazzetti M. J. Evolution of Ansaldo Energia’s gas turbine technology for hydrogen applications / M. J. Mazzetti, V. Brandani // International Journal of Hydrogen Energy. – 2020. – Vol. 45, Issue 55. – Pp. 30234-30248.

37. Guagliardi A. Design principles for dedicated hydrogen gas turbines: Ansaldo Energia’s GT26 and GT36 series / A. Guagliardi, A. Traverso // Energy Conversion and Management. – 2021. – Vol. 232. – Article 113865.

38. Riccio G. Low-emission combustion chambers for hydrogen-rich fuels: Design and operational experience with Ansaldo Energia gas turbines / G. Riccio, M. Gazzani // Applied Thermal Engineering. – 2022. – Vol. 205. – Article 118024.

39. Parente A. Sequential two-stage combustion technology for NOx and CO reduction in hydrogenenriched gas turbines / A. Parente, C. Galletti // Combustion and Flame. – 2021. – Vol. 226. – Pp. 534-548.

40. Tuccillo R. Comparative analysis of combustion chamber designs for hydrogen-rich fuels in GT26 and GT36 turbines / R. Tuccillo, M. C. Cameretti // Journal of Engineering for Gas Turbines and Power. – 2020. – Vol. 142, № 7. – Article 071017.

41. Fantozzi F. Technical specifications and component design of Ansaldo AE94.3A gas turbine / F. Fantozzi, P. Laranci // Applied Thermal Engineering. – 2019. – Vol. 156. – Pp. 483-493.

42. Bianchi M. Performance optimization in combined cycle configurations with Ansaldo AE94.3A turbines / M. Bianchi, A. De Pascale // Energy. – 2020. – Vol. 198. – Article 117298.

43. Cocchi S. Progressive hydrogen enrichment in Ansaldo gas turbines: Historical evolution and experimental validation from 2006 to 2020 / S. Cocchi, S. Sigali // International Journal of Hydrogen Energy. – 2021. – Vol. 46, Issue 33. – Pp. 17295-17311.

44. Oliva P. Operational reliability of hydrogenenriched fuel in AE94 gas turbines: Analysis of 715,000 cumulative operating hours / P. Oliva, E. Rossi // Journal of Natural Gas Science and Engineering. – 2022. – Vol. 97. – Article 104359.

45. Brunetti I. Advanced architecture optimization in Ansaldo AE94.3A gas turbines for enhanced operational flexibility / I. Brunetti, A. Traverso // Applied Energy. – 2020. – Vol. 261. – Article 114382.

46. Cappelletti A. Start-up dynamics and control strategies in modern heavy-duty gas turbines: The case of AE94.3A / A. Cappelletti, F. Martelli // Energy Procedia. – 2019. – Vol. 158. – Pp. 6072-6077.

47. Fortunato V. Technological upgrades in hot gas path components for improved environmental performance in Ansaldo Energia turbines / V. Fortunato, S. M. Camporeale // Journal of Engineering for Gas Turbines and Power. – 2021. – Vol. 143, № 9. – Article 091009.

48. Tola V. Premixed fuel gas technology applications for load management and transition regime stabilization in hydrogen-capable gas turbines / V. Tola, A. Pettinau // Applied Thermal Engineering. – 2021. – Vol. 192. – Article 116932.

49. Finkenrath M. Sequential fuel combustion technology and its effect on combined cycle efficiency in GT26 and GT36 turbines / M. Finkenrath, P. Chiesa // International Journal of Energy Research. – 2022. – Vol. 46, Issue 2. – Pp. 1153-1168.

50. Sabia P. Selective chamber deactivation strategy for NOx reduction in hydrogen-enriched turbines under part-load conditions / P. Sabia, M. de Joannon // Energy. – 2020. – Vol. 213. – Article 118758.

51. Ferrari N. Fuel flexibility in next-generation gas turbines: Technology enablers for hydrogen integration without hardware modifications / N. Ferrari, J. Szego // Journal of Energy Resources Technology. – 2021. – Vol. 143, № 7. – Article 070908.

52. Bellucci J. Welded rotor design implications for maintenance optimization and life-cycle cost reduction in heavy-duty gas turbines / J. Bellucci, F. Rubechini // Journal of Engineering for Gas Turbines and Power. – 2020. – Vol. 142, № 5. – Article 051006.

53. Braccesi C. Reliability assessment of GT26 gas turbines based on global operational data: 3.4 million hours and 44,000 starts field experience / C. Braccesi, F. Cianetti // Energy. – 2022. – Vol. 239. – Article 122173.

54. Russo G. GT26: A benchmark in high hydrogen content fuel gas turbine technology for combined cycle applications / G. Russo, D. Mazzei // Applied Energy. – 2021. – Vol. 290. – Article 116730.

55. Burlando M. Environmental performance and operational flexibility in modern GT26 hydrogencompatible gas turbines / M. Burlando, C. Solisio // Energy & Fuels. – 2020. – Vol. 34, № 10. – Pp. 12751-12762.

56. Magnani S. Design considerations for emission reduction and operational flexibility in hydrogen-capable gas turbines: Lessons from GT26 implementation / S. Magnani, A. Traverso // Journal of Engineering for Gas Turbines and Power. – 2022. – Vol. 144, № 4. – Article 041008.

57. Spallina V. GT36: Technological assessment of dedicated hydrogen gas turbines in modern energy systems / V. Spallina, M. C. Romano // Energy Conversion and Management. – 2021. – Vol. 235. – Article 113972.

58. Iaquaniello G. Performance and environmental impact of GT36 hydrogen-compatible gas turbine in commercial applications / G. Iaquaniello, A. Salladini // International Journal of Hydrogen Energy. – 2020. – Vol. 45, Issue 60. – Pp. 34478-34493.

59. ANSALDO ENERGIA. GT36 Advanced Gas Turbine Technology: Technical Report. – 2020.

60. Johnson M. J. Hydrogen-fired gas turbines: System integration for low emissions power generation / M. J. Johnson et al. // International Journal of Hydrogen Energy. – 2020. – Vol. 45. – Pp. 21972-21984.

61. Tuccillo R. Performance and Emissions of GT36 in Decarbonized Energy Systems / R. Tuccillo // Energy Conversion and Management. – 2020. – Vol. 205. – Article 112345.

62. Ansaldo Energia. Comparative Analysis of GT26 and GT36 Gas Turbines: White Paper. – 2019.

63. Ferrari M. L. H2H Power Project: Assessment of Hydrogen Integration in Power Generation / M. L. Ferrari et al. // Energy Procedia. – 2018. – Vol. 142. – Pp. 932-937.

64. Gabrielli P. Industrial hydrogen production and applications: A comprehensive review / P. Gabrielli et al. // Renewable and Sustainable Energy Reviews. – 2019. – Vol. 113. – Article 109290.

65. Siemens Energy. SGT-600 Gas Turbine: Technical Specifications: Technical Datasheet. – 2021.

66. Andersson M. Hydrogen blending in gas turbines: SGT series adaptation and performance / M. Andersson et al. // International Journal of Hydrogen Energy. – 2021. – Vol. 46. – Pp. 23524-23536.

67. Siemens Energy. Low Emission Technology for SGT-Series: Technical Report. – 2020.

68. Siemens Energy. SGT-800 Gas Turbine Technical Overview: Product Brochure. – 2022.

69. Magnusson F. Efficiency comparison of modern gas turbines in combined cycle operation / F. Magnusson et al. // Applied Energy. – 2020. – Vol. 278. – Article 115630.

70. Ditaranto M. Adaptation of Gas Turbine Technology for Hydrogen Operation: The HYFLEXPOWER Project / M. Ditaranto et al. // Energy. – 2021. – Vol. 215. – Article 119088.

71. International Energy Agency (IEA). The Role of Hydrogen in Energy Transition: Special Report. – 2021.

72. Engie. HYFLEXPOWER: The World’s First Hydrogen-Based Power Plant: Project Report. – 2022.

73. General Electric. 7HA.02 Gas Turbine Technical Specifications: Product Documentation. – 2020.

74. General Electric. Pathways to Decarbonization: The Role of Hydrogen in Gas Turbines: Technical Report. – 2021.

75. Patel S. Gas Turbine Technology for Future Hydrogen Energy Systems / S. Patel // Power Magazine. – 2021. – Vol. 165, № 3. – Pp. 42-49.

76. Gielen D. The role of renewable hydrogen in the transition of the power sector: Technical Report / D. Gielen et al. // International Renewable Energy Agency (IRENA). – 2022.

77. Fusina hydrogen power station // Wikipedia. – 2025. – URL: https://en.wikipedia.org/wiki/Fusina_hydrogen_power_station. (Дата обращения: 10.05.2025).

78. Italy launches first clean hydrogen power plant // Phys.org. – 2009. – URL: https://phys.org/news/2009-08-italy-hydrogen-power-plant.html. (Дата обращения: 10.05.2025).

79. Inauguration of First Industrial-scale Hydrogen Plant in the World // Newswire Today – 2009. – URL: https://www.newswiretoday.com/news/inauguration-of-first-industrial-scalehydrogen-plant-in-the-world. (Дата обращения: 10.05.2025).

80. Enel’s Fusina Hydrogen-fed Power Generation Plant // Studylib. – 2010. – URL: https://studylib.ru/doc/xxxxxx/enel-fusina-hydrogen-fed-power-generation-plant. (Дата обращения: 10.05.2025).

81. Fusina combined cycle project // Modern Power Systems. – 2009. – URL: https://www.modernpowersystems.com/projects/fusina-combined-cycle. (Дата обращения: 10.05.2025).

82. Экономические и производственные характеристики Fusina Hydrogen Power Station // Power Engineering International. – 2010. – URL: https://www.powerengineeringint.com/projects/fusina-hydrogen. (Дата обращения: 10.05.2025).

83. Пресс-релиз Enel о запуске проекта Hydrogen Park // Enel. – 2008. – URL: https://www.enel.com/media/press-releases/2008/04/hydrogen-park-launch. (Дата обращения: 10.05.2025).

84. Конти Ф. О себестоимости электроэнергии на Fusina // Enel. – 2009. – URL: https://www.enel.com/media/interviews/2009/fulvio-conti-fusina-cost. (Дата обращения: 10.05.2025).

85. Информация о закрытии станции Fusina // Enel. – 2018. – URL: https://www.enel.com/media/announcements/2018/fusina-closure. (Дата обращения: 10.05.2025).

86. Hydrogen as a flexible energy storage for a fully renewable European POWER system // Cordis. europa.eu – 2023. – URL: https://cordis.europa.eu/project/id/884229. (Дата обращения: 10.05.2025).

87. HYFLEXPOWER project demonstrates 100 % hydrogen operation // Gas Turbine World. – 2023. – URL: https://gasturbineworld.com/siemens-hyflexpower/.(Дата обращения: 10.05.2025).

88. First successful demonstration with 100 % green H2 // Hyflexpower.eu. – 2023. – URL: https://www.hyflexpower.eu/2023/10/24/first-successful-demonstration-with-100-green-h2. (Дата обращения: 10.05.2025).

89. MHPS Successfully Tests Large-scale High-efficiency Gas Turbine Fueled by 30% Hydrogen Mix // Mitsubishi Power. – 2018. – URL: https://power.mhi.com/news/20180119.html. (Дата обращения: 10.05.2025).

90. MHPS Successfully Tests Large-Scale High-Efficiency Gas Turbine Fueled by 30% Hydrogen Mix // Business Wire. – 2018. – URL: https://www.businesswire.com/news/home/20180125005516/en//MHPS-Successfully-Tests-Large-Scale-High-EfficiencyGas-Turbine-Fueled. (Дата обращения: 10.05.2025).

91. Mitsubishi Tests Large-Scale Gas Turbine Fuelled by Hydrogen Mix // Process Worldwide. – 2018. – URL: https://www.process-worldwide.com/mitsubishi-tests-large-scale-gas-turbine-fuelled-by-hydrogen-mix-a-680190/. (Дата обращения: 10.05.2025).

92. Mitsubishi Hitachi Tests Turbine that Burns Natural Gas-Hydrogen Mix // Power Engineering. – 2018. – URL: https://www.power-eng.com/gas/turbines/mitsubishi-hitachi-tests-turbine-that-burns-natural-gas-hydrogen-mix/. (Дата обращения: 10.05.2025).


Review

For citations:


Bairamov A.N., Egorov A.S. Development of a concept for the use of gas turbine units in the integration of nuclear power plants with a hydrogen complex. Alternative Energy and Ecology (ISJAEE). 2025;(5):43-63. (In Russ.) https://doi.org/10.15518/isjaee.2025.05.043-063

Views: 12


ISSN 1608-8298 (Print)