Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Bioelectrochemical system for green energy production in a circular bioeconomy: conversion of solar energy and organic waste into hydrogen carrier gases

https://doi.org/10.15518/isjaee.2025.05.091-124

Abstract

The actual global use of organic waste (OW) potentially suitable for the production of hydrogen carriers is about 6,14% with a total energy potential of more than 6,5 million MWh/year. It is known that among all possible methods of OW processing, the anaerobic digestion (AD) method is one of the most preferable. This paper presents the main methods of AD process intensification (two-stage AD, pre-treatment in a vortex layer apparatus, integration of a microbial electrolysis cell and AD, use of solar energy) combined into complex bioelectrochemical system (BES) using the principles of circular bioeconomy (production and consumption of goods, services and energy based on the use of biomass) focused on the production of green energy from OW using solar energy. The objective of this paper is to present the results of a comprehensive integration of the principles of circular bioeconomy, OW processing, and the use of renewable energy sources in the agricultural sector in terms of biomass conversion into green energy. The application of the developed complex BES allowed to convert solar energy into biomethane and thereby improve both the conversion of organic matter into gaseous hydrogen carriers and the quality of biohythane. The solar energy conversion coefficient was 11,6: 1 kWh of the received solar energy can be converted into 11,6 kWh of energy stored in biomethane when processing about 0,9 m3 of OW with a total energy yield of 71 kWh. The obtained results can be useful in scaling up BES used for sustainable energy supply with simultaneous processing of OW, allowing for environmentally friendly and energy-efficient utilization of OW with subsequent use of the effluent as a biofertilizer.

About the Authors

A. A. Kovalev
Federal State Budgetary Scientific Institution «Federal Scientific Agroengineering Center VIM»
Russian Federation

Kovalev Andrey Alexandrovich, chief researcher of the laboratory of bioenergy technologies, doctor of technical sciences

Researcher ID: F-7045-2017

Scopus Author ID: 57205285134

109428, Moscow, 1-y Institutskiy proezd, 5



D. A. Kovalev
Federal State Budgetary Scientific Institution «Federal Scientific Agroengineering Center VIM»
Russian Federation

Kovalev Dmitry Alexandrovich, head of the laboratory of bioenergy and supercritical technologies, candidate of technical sciences

Researcher ID: K-4810-2015

109428, Moscow, 1-y Institutskiy proezd, 5



V. A. Panchenko
Russian University of Transport
Russian Federation

Panchenko Vladimir Anatolyevich, candidate of technical sciences, associate professor of the Department, senior researcher of the Laboratory of the Federal Scientific Agroengineering Center VIM

Researcher ID: P-8127-2017

Scopus Author ID: 57201922860

Web of Science Researcher ID: AAE-1758-2019

127994, Moscow, Obraztsova str., 9



Vivekanand Vivekanand
Center for Energy and Environment, Malaviya National Institute of Technology
India

Vivekanand Vivekanand, Assistant Professor Malaviya National Institute of Technology Jaipur

Scopus Author ID: 57211114758

302017, Rajasthan, Jaipur



E. A. Zhuravleva
Institute of Microbiology named after S. N. Vinogradsky, Federal Research Center «Fundamentals of Biotechnology» of the Russian Academy of Sciences
Russian Federation

Zhuravleva Elena Alexandrovna, Research Center of Biotechnology, Russian Academy of Sciences, researcher Laboratory of Microbiology of Anthropogenic Habitats, postgraduate, PhD

Researcher ID: JBS-4297-2023

Scopus Author ID: 57216346570

119071, Moscow, Leninsky Prospekt, Building 33, Building 2. Tel.: (495) 954-52-83



Yu. V. Litti
Institute of Microbiology named after S. N. Vinogradsky, Federal Research Center «Fundamentals of Biotechnology» of the Russian Academy of Sciences
Russian Federation

Litti Yuri Vladimirovich, Research Center of Biotechnology, Russian Academy of Sciences, Head of Laboratory of Microbiology of Anthropogenic Habitats, Candidate of Biological Sciences

Researcher ID: C-4945-2014

Scopus Author ID: 59312651000
Scopus Author ID: 55251689800

119071, Moscow, Leninsky Prospekt, Building 33, Building 2. Tel.: (495) 954-52-83



References

1. Outlook for biogas and biomethane: prospects for organic growth. Paris: IEA; 2020. https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth.

2. Directive EU. 2018/2001 of the European Parliament and of the council of 11 December 2018 on the promotion of the use of energy from renewable sources. https://eur-lex.europa.eu/legal-content/EN/TXT/PD-F/?uri=CELEX:32018L2001&from=EN; 2018.

3. EU biodiversity strategy for 2030. https://environment.ec.europa.eu/strategy/biodiversity-strategy-2030_en.

4. Global potential of biogas. World Biogas Association. https://www.worldbiogasassociation.org/wp-content/uploads/2019/07/WBA-globalreport-56ppa4_digital.pdf.

5. Pathak A., Dhakate S., Singh B. P., Subhedar K. Rice Straw Biomass to High Energy Yield Biocoal by Torrefaction: Indian Perspective // Current science, 2019.

6. Saleem M. Possibility of Utilizing Agriculture Biomass as a Renewable and Sustainable Future Energy Source // Heliyon. 2022; 8(2):e08905. https://doi.org/10.1016/j.heliyon.2022.e08905.

7. Theuerl S., Herrmann C., Heiermann M., Grundmann P., Landwehr N., Kreidenweis U., Prochnow A. The Future Agricultural Biogas Plant in Germany: A Vision // Energies. 2019. https://doi.org/10.3390/en12030396.

8. Toklu E. Biomass Energy Potential and Utilization in Turkey // Renewable Energy. 2017; 107:235-244. https://doi.org/10.1016/j.renene.2017.02.008.

9. Soccol C. R., Faraco V., Karp S. G., Vandenberghe L. P. S., Thomaz-Soccol V., Woiciechowski A. L., Pandey A. Chapter 14 Lignocellulosic Bioethanol: Current Status and Future Perspectives. In Biomass, Biofuels, Biochemicals // Pandey A., Larroche C., Dussap C. -G., Gnansounou E., Khanal S. K., Ricke S. B. T. -B. A. F. and C. P. for the P. of L. and G. B. (Second E., Eds.; Academic Press, 2019; pp 331-354. https://doi.org/10.1016/B978-0-12-816856-1.00014-2.

10. Salles-Filho S. L. M., Castro P. F. D. de, Bin A., Edquist C., Ferro A. F. P., Corder S. Perspectives for the Brazilian Bioethanol Sector: The Innovation Driver // Energy Policy. 2017; 108:70-77. https://doi.org/10.1016/j.enpol.2017.05.037.

11. Devi S., Gupta C., Jat S., Parmar M. Crop Residue Recycling for Economic and Environmental Sustainability: The Case of India // Open Agriculture. 2017;2. https://doi.org/10.1515/opag-2017-0053.

12. Zhao H. Research on the Development Status and Countermeasures of Grain Industry in Shandong Province BT - Proceedings of the 2018 4th International Conference on Social Science and Higher Education (ICSSHE 2018) // Atlantis Press, 2018. https://doi.org/10.2991/icsshe-18.2018.219.

13. Castrillon L., Vázquez I., Marañon E., Sastre H. Anaerobic Thermophilic Treatment of Cattle Manure in UASB Reactors // Waste management & research: the journal of the International Solid Wastes and Public Cleansing Association, ISWA. 2002; 20:350-356. https://doi.org/10.1177/0734247X0202000406.

14. Chae K. J., Jang A., Yim S. K., Kim I. S. The Effects of Digestion Temperature and Temperature Shock on the Biogas Yields from the Mesophilic Anaerobic Digestion of Swine Manure // Bioresource Technology. 2008; 99(1):1-6. https://doi.org/10.1016/j.biortech.2006.11.063.

15. Gu J., Liu H., Wang S., Zhang M., Liu Y. An Innovative Anaerobic MBR-Reverse Osmosis-Ion Exchange Process for Energy-Efficient Reclamation of Municipal Wastewater to NEWater-like Product Water // Journal of Cleaner Production. 2019; 230:1287-1293. https://doi.org/10.1016/j.jclepro.2019.05.198.

16. Salomon K. R., Silva Lora E. E. Estimate of the Electric Energy Generating Potential for Different Sources of Biogas in Brazil // Biomass and Bioenergy. 2009; 33(9):1101-1107. https://doi.org/10.1016/j.biombioe.2009.03.001.

17. Souza S., Pereira W., Nogueira C., Pavan A., Sordi A. Custo Da Eletricidade Gerada Em Conjunto Motor Gerador Utilizando Biogás Da Suinocultura // Acta Scientiarum-technology - ACTA SCI-TECHNOL. 2004, 26. https://doi.org/10.4025/actascitechnol.v26i2.1510.

18. Souza S. N. M. de, Werncke I., Marques C. A., Bariccatti R. A., Santos R. F., Nogueira C. E. C., Bassegio D. Electric Energy Micro-Production in a Rural Property Using Biogas as Primary Source // Renewable and Sustainable Energy Reviews. 2013; 28:385-391. https://doi.org/10.1016/j.rser.2013.07.035.

19. Kalyuzhny S. V. Anaerobic biological treatment of wastewater / Ph. D. Kalyuzhny S. V., Danilovich D. A., Ph. D. Nozhevnikova A. N. Under the editorship of prof. Varfolomeev S. D. – M.: VINITI, 1991 (issue data 1992). – 156 p. ill.; 21. – (Biotechnology, Results of Science and Technology). (in Russ.).

20. Russia Renewable Energy Development Association (RREDA). https://rreda.ru/en/reports/annual-reports/2705/.

21. Agapkin A., Махотина И., Ibragimova N., Goryunova O., Izembayeva A., Kalachev S. The Problem of Agricultural Waste and Ways to Solve It. IOP Conference Series: Earth and Environmental Science. 2022; 981:22009. https://doi.org/10.1088/1755-1315/981/2/022009.

22. Ministry of agriculture of the Russian Federation. Guidelines in technological design of systems of manure removal and preparation for use; In Russian; Moscow; 2021. (in Russ.)

23. Sindhoj E., Krysztoforski M., Kuka K., Luostarinen S., Melnalksne Z., Mjöfors K., Riiko K., Tamm K., Ylivainio K., Sarvi M. Technologies and Management Practices for Sustainable Manure Use in the Baltic Sea Region, 2020.

24. Malomo G. A., Madugu A. S., Bolu S. A. Sustainable Animal Manure Management Strategies and Practices. In Agricultural Waste and Residues; Aladjadjiyan A., Ed.; IntechOpen: Rijeka, 2018. https://doi.org/10.5772/intechopen.78645.

25. Mogilevtsev V. I., Bryukhanov A. Ju., Maximov D. A., Vasilyev E. V., Subbotin I. A., Chernin S. Ja. et al. Utilization of manure on livestock farms for providing ecological safety of the territory, ground and underground water bodies in Leningrad region; (in Russ.) http://www.eco.sznii.ru/booklet.pdf.

26. Namsaraev Z., Gotovtsev P., Komova A., Vasilov R. G. Current Status and Potential of Bioenergy in the Russian Federation // Renewable and Sustainable Energy Reviews. 2018; 81:625-634. https://doi.org/10.1016/j.rser.2017.08.045.

27. Xu C. C., Lancaster J. Treatment of Secondary Sludge for Energy Recovery // Energy Recovery. 2009; 187-212.

28. Appels L., Baeyens J., Degrève J., Dewil R. Principles and Potential of the Anaerobic Digestion of Waste-Activated Sludge // Progress in Energy and Combustion Science. 2008; 34:755-781. https://doi.org/10.1016/j.pecs.2008.06.002.

29. Nielfa A., Cano R., Fdz-Polanco M. Theoretical Methane Production Generated by the Co-Digestion of Organic Fraction Municipal Solid Waste and Biological Sludge // Biotechnology Reports. 2015; 5:14-21. https://doi.org/10.1016/j.btre.2014.10.005.

30. Ghosh P., Kumar M., Kapoor R., Kumar S. S., Singh L., Vijay V., Vijay V. K., Kumar V., Thakur I. S. Enhanced Biogas Production from Municipal Solid Waste via Co-Digestion with Sewage Sludge and Metabolic Pathway Analysis // Bioresource Technology. 2020; 296:22275. https://doi.org/10.1016/j.biortech.2019.122275.

31. Nozhevnikova A. N., Russkova Y. I., Litti Yu. V., Parshina S. N., Zhuravleva E. A., Nikitina A. A. Syntrophy and Interspecies Electron Transfer in Methanogenic Microbial Communities // Microbiology. 2020; 89(2):129- 147. https://doi.org/10.1134/S0026261720020101.

32. O-Thong S., Mamimin C., Kongjan P., Reungsang A. Chapter Six-Two-Stage Fermentation Process for Bioenergy and Biochemicals Production from Industrial and Agricultural Wastewater; Li Y., Khanal S. K., Eds.; Advances in Bioenergy // Elsevier. – 2020. – Vol. 5. – Pp. 249-308. https://doi.org/10.1016/bs.aibe.2020.04.007.

33. Engineering ToolBox, (2003). Fuels – Higher and Lower Calorific Values. – URL: https://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html.

34. Laikova A. A., Kovalev A. A., Kovalev D. A., Zhuravleva E. A., Shekhurdina S. V., Loiko N. G., Litti Yu. V. Feasibility of Successive Hydrogen and Methane Production in a Single-Reactor Configuration of Batch Anaerobic Digestion through Bioaugmentation and Stimulation of Hydrogenase Activity and Direct Interspecies Electron Transfer // International Journal of Hydrogen Energy. 2023. https://doi.org/10.1016/j.ijhydene.2022.12.231.

35. Khan M. A., Ngo H. H., Guo W., Liu Y., Zhang X., Guo J., Chang S. W., Nguyen D. D., Wang J. Biohydrogen Production from Anaerobic Digestion and Its Potential as Renewable Energy // Renewable Energy. 2018; 129:754-768. https://doi.org/10.1016/j.renene.2017.04.029.

36. Marone A., Ayala-Campos O. R., Trably E., Carmona-Martínez A. A., Moscoviz R., Latrille E., Steyer J. -P., Alcaraz-Gonzalez V., Bernet N. Coupling Dark Fermentation and Microbial Electrolysis to Enhance Bio-Hydrogen Production from Agro-Industrial Wastewaters and by-Products in a Bio-Refinery Framework // International Journal of Hydrogen Energy. 2017; 42(3):1609- 1621. https://doi.org/10.1016/j.ijhydene.2016.09.166.

37. Kim S. -H., Kumar G., Chen W. -H., Khanal S. K. Renewable Hydrogen Production from Biomass and Wastes (ReBioH2-2020) // Bioresource Technology. 2021; 331:125024. https://doi.org/10.1016/j.biortech.2021.125024.

38. Dauptain K., Schneider A., Noguer M., Fontanille P., Escudie R., Carrere H., Trably E. Impact of Microbial Inoculum Storage on Dark Fermentative H2 Production // Bioresource Technology. 2021; 319:124234. https://doi.org/10.1016/j.biortech.2020.124234.

39. Paillet F., Barrau C., Escudié R., Bernet N., Trably E. Robust Operation through Effluent Recycling for Hydrogen Production from the Organic Fraction of Municipal Solid Waste // Bioresource technology. 2021; 319:124196. https://doi.org/10.1016/j.biortech.2020.124196.

40. Renaudie M., Dumas C., Vuilleumier S., Ernst, B. Biohydrogen Production in a Continuous Liquid/Gas Hollow Fiber Membrane Bioreactor: Efficient Retention of Hydrogen Producing Bacteria via Granule and Biofilm Formation // Bioresource Technology. 2021; 319:124203. https://doi.org/10.1016/j.biortech.2020.124203.

41. Sarkar, O.; Rova, U.; Christakopoulos, P.; Matsakas, L. Influence of Initial Uncontrolled PH on Acidogenic Fermentation of Brewery Spent Grains to Biohydrogen and Volatile Fatty Acids Production: Optimization and Scale-Up. Bioresource Technology 2021, 319, 124233. https://doi.org/10.1016/j.biortech.2020.124233.

42. Sekoai P. T., Daramola M. O., Mogwase B., Engelbrecht N., Yoro K. O., Petrus du Preez S., Mhlongo S., Ezeokoli O. T., Ghimire A., Ayeni A. O., Hlongwane G. N. Revising the Dark Fermentative H2 Research and Development Scenario – An Overview of the Recent Advances and Emerging Technological Approaches // Biomass and Bioenergy. 2020; 140:105673. https://doi.org/10.1016/j.biombioe.2020.105673.

43. Elreedy A., Fujii M., Koyama M., Nakasaki K., Tawfik A. Enhanced Fermentative Hydrogen Production from Industrial Wastewater Using Mixed Culture Bacteria Incorporated with Iron, Nickel, and Zinc-Based Nanoparticles // Water research. 2019; 151:349-361. https://doi.org/10.1016/j.watres.2018.12.043.

44. Kumar G., Mudhoo A., Sivagurunathan P., Nagarajan D., Ghimire A., Lay C. -H., Lin C. -Y., Lee D. -J., Chang J. -S. Recent Insights into the Cell Immobilization Technology Applied for Dark Fermentative Hydrogen Production // Bioresource Technology. 2016; 219:725-737. https://doi.org/10.1016/j.biortech.2016.08.065.

45. Srivastava N., Srivastava M., Mishra P. K., Kausar M. A., Saeed M., Gupta V. K., Singh R., Ramteke P. W. Advances in Nanomaterials Induced Biohydrogen Production Using Waste Biomass // Bioresource Technology. 2020; 307:123094. https://doi.org/10.1016/j.biortech.2020.123094.

46. Taherdanak M., Zilouei H., Karimi K. The Effects of Fe0 and Ni0 Nanoparticles versus Fe2+ and Ni2+ Ions on Dark Hydrogen Fermentation // International Journal of Hydrogen Energy. 2016; 41(1):167-173. https://doi.org/10.1016/j.ijhydene.2015.11.110.

47. Yang G., Wang J. Improving Mechanisms of Biohydrogen Production from Grass Using Zero-Valent Iron Nanoparticles // Bioresource Technology. 2018; 266:413-420. https://doi.org/10.1016/j.biortech.2018.07.004.

48. Taherdanak M., Zilouei H., Karimi K. Investigating the Effects of Iron and Nickel Nanoparticles on Dark Hydrogen Fermentation from Starch Using Central Composite Design // International Journal of Hydrogen Energy. 2015; 40(38):12956-12963. https://doi.org/10.1016/j.ijhydene.2015.08.004.

49. Yu L., Jiang W., Yu Y., Sun C. Effects of Dilution Ratio and Fe° Dosing on Biohydrogen Production from Dewatered Sludge by Hydrothermal Pretreatment // Environmental technology. 2014; 35(21-24):3092-3104. https://doi.org/10.1080/09593330.2014.931469.

50. Mullai P., Yogeswari M. K., Sridevi K. Optimisation and Enhancement of Biohydrogen Production Using Nickel Nanoparticles – A Novel Approach // Bioresource Technology. 2013; 141:212-219. https://doi.org/10.1016/j.biortech.2013.03.082.

51. Yang G., Wang J. Synergistic Enhancement of Biohydrogen Production from Grass Fermentation Using Biochar Combined with Zero-Valent Iron Nanoparticles // Fuel. 2019; 251:420-427. https://doi.org/10.1016/j.fuel.2019.04.059.

52. Gadhe A., Sonawane S. S., Varma M. N. Influence of Nickel and Hematite Nanoparticle Powder on the Production of Biohydrogen from Complex Distillery Wastewater in Batch Fermentation // International Journal of Hydrogen Energy. 2015; 40(34):10734-10743. https://doi.org/10.1016/j.ijhydene.2015.05.198.

53. Gadhe A., Sonawane S. S., Varma M. N. Enhancement Effect of Hematite and Nickel Nanoparticles on Biohydrogen Production from Dairy Wastewater // International Journal of Hydrogen Energy. 2015; 40(13):45024511. https://doi.org/10.1016/j.ijhydene.2015.02.046.

54. Mohanraj S., Kodhaiyolii S., Rengasamy M., Pugalenthi V. Phytosynthesized Iron Oxide Nanoparticles and Ferrous Iron on Fermentative Hydrogen Production Using Enterobacter Cloacae: Evaluation and Comparison of the Effects // International Journal of Hydrogen Energy. 2014; 39(23):11920-11929. https://doi.org/10.1016/j.ijhydene.2014.06.027.

55. Mishra P., Thakur S., Mahapatra D. M., Wahid Z. A., Liu H., Singh L. Impacts of Nano-Metal Oxides on Hydrogen Production in Anaerobic Digestion of Palm Oil Mill Effluent – A Novel Approach // International Journal of Hydrogen Energy. 2018; 43(5):2666-2676. https://doi.org/10.1016/j.ijhydene.2017.12.108.

56. Carrère H., Bougrier C., Castets D., Delgenès J. P. Impact of Initial Biodegradability on Sludge Anaerobic Digestion Enhancement by Thermal Pretreatment // Journal of Environmental Science and Health, Part A. 2008; 43(13):1551-1555. https://doi.org/10.1080/10934520802293735.

57. Luste S., Luostarinen S., Sillanpää M. Effect of Pre-Treatments on Hydrolysis and Methane Production Potentials of by-Products from Meat-Processing Industry // Journal of Hazardous Materials. 2009; 164(1):247-255. https://doi.org/10.1016/j.jhazmat.2008.08.002.

58. Izumi, K.; Okishio, Y.; Nagao, N.; Niwa, C.; Yamamoto, S.; Toda, T. Effects of Particle Size on Anaerobic Digestion of Food Waste // International Biodeterioration & Biodegradation. 2010; 64(7):601-608. https://doi.org/10.1016/j.ibiod.2010.06.013.

59. Raynal J., Delgenès J. P., Moletta R. Two-Phase Anaerobic Digestion of Solid Wastes by a Multiple Liquefaction Reactors Process // Bioresource Technology. 1998; 65(1):97-103. https://doi.org/10.1016/S0960-8524(98)00009-1.

60. Salminen E., Einola J., Rintala J. The Methane Production of Poultry Slaughtering Residues and Effects of Pre-treatments on the Methane Production of Poultry Feather // Environmental Technology. 2003; 24(9):1079- 1086. https://doi.org/10.1080/09593330309385648.

61. Jin Y., Li H., Mahar R. B., Wang Z., Nie Y. Combined Alkaline and Ultrasonic Pretreatment of Sludge before Aerobic Digestion // Journal of Environmental Sciences. 2009; 21(3):279-284. https://doi.org/10.1016/S1001-0742(08)62264-0.

62. Kovalev D., Kovalev A., Litti Yu., Nozhevnikova A., Katraeva I. The Effect of the Load on Organic Matter on Methanogenesis in the Continuous Рrocess of Bioconversion of Anaerobic Bioreactor Substrates Pretreated in the Vortex Layer Apparatus // Ecology and Industry of Russia. 2019; 23(12):9-13. (In Russ.) https://doi.org/10.18412/1816-0395-2019-12-9-13

63. Kovalev A. A., Kovalev D. A., Litti Yu. V., Katraeva I. V., Grigoriev V. S. Chapter 7 – Optimization of the Organic Waste Anaerobic Digestion in Biogas Plants through the Use of a Vortex Layer Apparatus / Vasant P., Thomas J., Munapo E., Weber G. -W. B. T. -A. of A. I. in a G. E. E., Eds. // Academic Press. – 2022, pp. 129-150. https://doi.org/10.1016/B978-0-323-89785-3.00016-5.

64. Litti Yu., Kovalev D., Kovalev A., Katraeva I., Russkova Y., Nozhevnikova A. Increasing the Efficiency of Organic Waste Conversion into Biogas by Mechanical Pretreatment in an Electromagnetic Mill // In Journal of Physics: Conference Series. – 2018. – Vol. 1111. https://doi.org/10.1088/1742-6596/1111/1/012013.

65. Mikheeva E., Katraeva I., Vorozhtsov D., Litti Yu., Nozhevnikova A. Efficiency of Two-Phase Anaerobic Fermentation and the Physicochemical Properties of the Organic Fraction of Municipal Solid Waste Processed in a Vortex-Layer Apparatus // Applied Biochemistry and Microbiology. 2020; 56:736-742. https://doi.org/10.1134/S0003683820060113.

66. Litti Yu. V., Kovalev D. A., Kovalev A. A., Katraeva I. V., Mikheeva E. R., Nozhevnikova A. N. Using the vortex layer apparatus to improve the efficiency of methane digestion of sewage sludge // Water supply and sanitary equipment. 2019; 11:32-40. (In Russ.). https://doi.org/10.35776/MNP.2019.11.05

67. Kovalev D. A., Kovalev A. A., Katraeva I. V., Litti Yu. V., Nozhevnikova A. N. Effect of disinfection of substrates of anaerobic bioreactors in vortex layer apparatus // Chemical Safety. 2019; 3(1):56-64. (In Russ.). https://doi.org/10.25514/CHS.2019.1.1500.

68. Kovalev A. A., Kovalev D. A., Grigoriev V. S. Energy Efficiency of Pretreatment of Digester Synthetic Substrate in a Vortex Layer Apparatus // Engineering Technologies and Systems. 2020; 30(1):92-110. https://doi.org/10.15507/2658-4123.030.202001.092-110.

69. Kovalev A. A., Kovalev D. A., Zhuravleva E. A., Laikova A. A., Shekhurdina S. V., Litti Yu. V. Pretreatment of Anaerobic Fermentation Feedstock in a Vortex Layer Apparatus: Effect of the Working Chamber Ferromagnetic Core on Biogas Production // International Journal of Hydrogen Energy. 2024; 57:764-768. https://doi.org/10.1016/j.ijhydene.2024.01.053.

70. Kovalev A. A., Kovalev D. A., Karaeva J. V., Vivekanand V., Pareek N., Masakapalli S. K., Osmonov O. M., Zhuravleva E. A., Laikova A. A., Shekhurdina S. V., Litti Yu. V. Innovative Organic Waste Pretreatment Approach for Efficient Anaerobic Bioconversion: Effect of Recirculation Ratio at Pre-Processing in Vortex Layer Apparatus on Biogas Production // International Journal of Hydrogen Energy. 2024; 53:208-217. https://doi.org/10.1016/j.ijhydene.2023.12.044.

71. Kovalev A. A., Kovalev D. A., Kovaleva E. V., Panchenko V. A., Litti Yu. V. Thermal Effects of Pre-treatment of Dark Fermentation Feedstocks in a Vortex Layer Apparatus // International Journal of Hydrogen Energy. 2024; 51:160-170. https://doi.org/10.1016/j.ijhydene.2023.10.127.

72. Mikheeva E. R., Katraeva I. V., Kovalev A. A., Biryuchkova P. D., Zhuravleva E. A., Vishnyakova A. V., Litti Yu. V. Pretreatment in Vortex Layer Apparatus Boosts Dark Fermentative Hydrogen Production from Cheese Whey // Fermentation. 2022. https://doi.org/10.3390/fermentation8120674.

73. Mikheeva E. R., Katraeva I. V., Kovalev A. A., Kovalev D. A., Litti Yu. V. Effects of Pretreatment in a Vortex Layer Apparatus on the Properties of Confectionery Wastewater and Its Dark Fermentation // International Journal of Hydrogen Energy. 2022; 47(55):23165-23174. https://doi.org/10.1016/j.ijhydene.2022.05.183.

74. Zhuravleva E. A., Shekhurdina S. V., Kotova I. B., Loiko N. G., Popova N. M., Kryukov E., Kovalev A. A., Kovalev D. A., Litti Yu. V. Effects of Various Materials Used to Promote the Direct Interspecies Electron Transfer on Anaerobic Digestion of Low-Concentration Swine Manure // Science of The Total Environment. 2022; 839:156073. https://doi.org/10.1016/j.scito-tenv.2022.156073.

75. Laikova A., Zhuravleva E., Shekhurdina S., Ivanenko A., Biryuchkova P., Loiko N., Kryukov E., Kovalev A., Kovalev D., He C., Litti Yu. The Intracellular Accumulation of Iron Coincides with Enhanced Biohydrogen Production by Thermoanaerobacterium Thermosaccharolyticum // Chemical Engineering Journal. 2024; 497:154961. https://doi.org/10.1016/j.cej.2024.154961.

76. Baek G., Kim J., Kim J., Lee C. Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion // Energies. 2018; 11(1). https://doi.org/10.3390/en11010107.

77. Shekhurdina S., Zhuravleva E., Kovalev A., Andreev E., Kryukov E., Loiko N., Laikova A., Popova N., Kovalev D., Vivekanand V., Litti Yu. Comparative Effect of Conductive and Dielectric Materials on Methanogenesis from Highly Concentrated Volatile Fatty Acids // Bioresource Technology. 2023; 377:128966. https://doi.org/10.1016/j.biortech.2023.128966.

78. Zhuravleva E., Kovalev A., Kovalev D., Kotova I., Shekhurdina S., Laikova A., Krasnovsky A., Pygamov T., Vivekanand V., Li L., He C., Litti Yu. Does Carbon Cloth Really Improve Thermophilic Anaerobic Digestion Performance on a Larger Scale? Focusing on Statistical Analysis and Microbial Community Dynamics // Journal of Environmental Management. 2023; 341:118124. https://doi.org/10.1016/j.jenvman.2023.118124.

79. Lee J. -Y., Lee S. -H., Park H. -D. Enrichment of Specific Electro-Active Microorganisms and Enhancement of Methane Production by Adding Granular Activated Carbon in Anaerobic Reactors // Bioresource Technology. 2016; 205:205-212. https://doi.org/10.1016/j.biortech.2016.01.054.

80. Dang Y., Holmes D. E., Zhao Z., Woodard T. L., Zhang Y., Sun D., Wang L. -Y., Nevin K. P., Lovley D. R. Enhancing Anaerobic Digestion of Complex Organic Waste with Carbon-Based Conductive Materials // Bioresource Technology. 2016; 220:516- 522. https://doi.org/10.1016/j.biortech.2016.08.114.

81. Dang Y., Sun D., Woodard T. L., Wang L. -Y., Nevin K. P., Holmes D. E. Stimulation of the Anaerobic Digestion of the Dry Organic Fraction of Municipal Solid Waste (OFMSW) with Carbon-Based Conductive Materials // Bioresource Technology. 2017; 238:30-38. https://doi.org/10.1016/j.biortech.2017.04.021.

82. Yin Q., Miao J., Li B., Wu G. Enhancing Electron Transfer by Ferroferric Oxide during the Anaerobic Treatment of Synthetic Wastewater with Mixed Organic Carbon // International Biodeterioration & Biodegradation. 2017; 119:104-110. https://doi.org/10.1016/j.ibiod.2016.09.023.

83. Storck T., Virdis B., Batstone D. J. Modelling Extracellular Limitations for Mediated versus Direct Interspecies Electron Transfer // The ISME Journal. 2016; 10(3):621-631. https://doi.org/10.1038/ismej.2015.139.

84. Santoro C., Arbizzani C., Erable B., Ieropoulos I. Microbial Fuel Cells: From Fundamentals to Applications. A Review // Journal of Power Sources. 2017; 356:225-244. https://doi.org/10.1016/j.jpow-sour.2017.03.109.

85. Logan B. E., Call D., Cheng S., Hamelers H. V. M., Sleutels T. H. J. A., Jeremiasse A. W., Rozendal R. A. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter // Environmental Science & Technology. 2008; 42(23):8630- 8640. https://doi.org/10.1021/es801553z.

86. Kazarinov I. A., Meshcheryakova M. O., Karamysheva L. V. Conversion of organic waste into electrical energy using microbial electrochemical technologies // Electrochemical Power Engineering. – 2016. – Vol. 16, issue. 4. – Pр. 207-225. (In Russ.). https://doi.org/10.18500/1608-4039-2016-16-4-207-225

87. Pandit S., Savla N., Sonawane J. M., Sani A. M., Gupta P. K., Mathuriya A. S., Rai A. K., Jadhav D. A., Jung S. P., Prasad R. Agricultural Waste and Wastewater as Feedstock for Bioelectricity Generation Using Microbial Fuel Cells: Recent Advances // Fermentation. 2021. https://doi.org/10.3390/fermentation7030169.

88. Wang Z., Lee T., Lim B., Choi C., Park J. Microbial Community Structures Differentiated in a Single-Chamber Air-Cathode Microbial Fuel Cell Fueled with Rice Straw Hydrolysate // Biotechnology for biofuels. 2014; 7:9. https://doi.org/10.1186/1754-6834-7-9.

89. Gurung D. A., Oh S. -E. Rice Straw as a Potential Biomass for Generation of Bioelectrical Energy Using Microbial Fuel Cells (MFCs) // Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2015; 37:2625-2631. https://doi.org/10.1080/15567036.2012.728678.

90. Sani A., Savla N., Pandit S., Singh Mathuriya A., Gupta P. K., Khanna N., Pramod Babu R., Kumar S. Recent Advances in Bioelectricity Generation through the Simultaneous Valorization of Lignocellulosic Biomass and Wastewater Treatment in Microbial Fuel Cell // Sustainable Energy Technologies and Assessments. 2021; 48:101572. https://doi.org/10.1016/j.seta.2021.101572.

91. Javed M., Nisar M. A., Ahmad M., Muneer B. Production of Bioelectricity from Vegetable Waste Extract by Designing a U-Shaped Microbial Fuel Cell // Pakistan Journal of Zoology. 2017; 49:711-716. https://doi.org/10.17582/journal.pjz/2017.49.2.711.716.

92. Kalagbor I., Bi A., Bc I., Bj A. Electricity Generation from Waste Tomatoes, Banana, Pineapple Fruits and Peels Using Single Chamber Microbial Fuel Cells (SMFC). 2020.

93. Venkata Mohan S., Mohanakrishna G., Velvizhi G., Babu V. L., Sarma P. N. Bio-Catalyzed Electrochemical Treatment of Real Field Dairy Waste-water with Simultaneous Power Generation // Biochemical Engineering Journal. 2010; 51(1):32-39. https://doi.org/10.1016/j.bej.2010.04.012.

94. Xu J., Zhang X., Jin D., Wu P. Anammox-Coupled Microbial Fuel Cell (Anammox-MFC) for Wastewater Treatment: A Critical Review // Journal of Water Process Engineering. 2025; 71:107285. https://doi.org/10.1016/j.jwpe.2025.107285.

95. Nealson K. H. Bioelectricity (Electromicrobiology) and Sustainability // Microbial Biotechnology. 2017; 10(5):1114-1119. /https://doi.org/10.1111/1751-7915.12834.

96. Kadier A., Jain P., Lai B., Kalil M., Kondaveeti S., Alabbosh K., Abu Reesh I., Mohanakrishna G. Biorefinery Perspectives of Microbial Electrolysis Cells (MECs) for Hydrogen and Valuable Chemicals Production through Wastewater Treatment // Biofuel Research Journal. 2020; 7:1128-1142. https://doi.org/10.18331/BRJ2020.7.1.5.

97. Choi K. -S. Kondaveeti S. Min B. Bioelectrochemical methane (CH4) production in anaerobic digestion at different supplemental voltages // Bioresource Technology. 2017; 245:826-832. https://doi.org/10.1016/j.biortech.2017.09.057.

98. Feng Q., Song Y. -C. Decoration of Graphite Fiber Fabric Cathode with Electron Transfer Assisting Material for Enhanced Bioelectrochemical Methane Production // Journal of Applied Electrochemistry. 2016; 46(12):1211-1219. https://doi.org/10.1007/s10800-016-1003-8.

99. Feng Q., Song Y. -C., Yoo K., Kuppanan N., Subudhi S., Lal B. Polarized Electrode Enhances Biological Direct Interspecies Electron Transfer for Methane Production in Upflow Anaerobic Bioelectrochemical Reactor // Chemosphere. 2018; 204:186-192. https://doi.org/10.1016/j.chemosphere.2018.03.163.

100. Park S. -G., Rhee C., Shin S. G., Shin J., Mohamed H. O., Choi Y. -J., Chae K. -J. Methanogenesis Stimulation and Inhibition for the Production of Different Target Electrobiofuels in Microbial Electrolysis Cells through an On-Demand Control Strategy Using the Coenzyme M and 2-Bromoethanesulfonate // Environment International. 2019; 131:105006. https://doi.org/10.1016/j.envint.2019.105006.

101. Song Y. -C., Feng Q., Ahn Y. Performance of the Bioelectrochemical Anaerobic Digestion of Sewage Sludge at Different HRTs // Energy & Fuels. 2015; 30:352- 359. https://doi.org/10.1021/acs.energyfuels.5b02003.

102. Zhang Y., Merrill M. D., Logan B. E. The Use and Optimization of Stainless Steel Mesh Cathodes in Microbial Electrolysis Cells // International Journal of Hydrogen Energy. 2010; 35(21):12020-12028. https://doi.org/10.1016/j.ijhydene.2010.08.064.

103. Sangeetha T., Guo Z., Liu W., Gao L., Wang L., Cui M., Chen C., Wang A. Energy Recovery Evaluation in an up Flow Microbial Electrolysis Coupled Anaerobic Digestion (ME-AD) Reactor: Role of Electrode Positions and Hydraulic Retention Times // Applied Energy. 2017; 206:1214-1224. https://doi.org/10.1016/j.apenergy.2017.10.026.

104. Rousseau R., Etcheverry L., Roubaud E., Basséguy R., Délia M. -L., Bergel A. Microbial Electrolysis Cell (MEC): Strengths, Weaknesses and Research Needs from Electrochemical Engineering Standpoint // Applied Energy. 2020; 257:113938. https://doi.org/10.1016/j.apenergy.2019.113938.

105. Shang G., Yu J., Cui K., Zhang H., Guo Y., Zhao M., Wang C., Guo K. A Novel Tubular Single-Chamber Microbial Electrolysis Cell for Efficient Methane Production from Industrial Potato Starch Wastewater // Biochemical Engineering Journal. 2025; 213:109561. https://doi.org/10.1016/j.bej.2024.109561.

106. Call D., Logan B. Hydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane // Environmental Science & Technology. 2008; 42:3401-3406. https://doi.org/10.1021/es8001822.

107. Park J., Lee B., Tian D., Jun H. Bioelectrochemical Enhancement of Methane Production from Highly Concentrated Food Waste in a Combined Anaerobic Digester and Microbial Electrolysis Cell // Bioresource Technology. 2018; 247:226-233. https://doi.org/10.1016/j.biortech.2017.09.021.

108. Cheng S., Xing D., Call D. F., Logan B. E. Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis // Environmental Science & Technology. 2009; 43(10):3953-3958. https://doi.org/10.1021/es803531g.

109. Bo T., Zhu X., Zhang L., Tao Y., He X., Li D., Yan Z. A New Upgraded Biogas Production Process: Coupling Microbial Electrolysis Cell and Anaerobic Digestion in Single-Chamber, Barrel-Shape Stainless Steel Reactor // Electrochemistry Communications. 2014; 45:67-70. https://doi.org/10.1016/j.elecom.2014.05.026.

110. Escapa A., Mateos R., Martínez E. J., Blanes J. Microbial Electrolysis Cells: An Emerging Technology for Wastewater Treatment and Energy Recovery. From Laboratory to Pilot Plant and Beyond // Renewable and Sustainable Energy Reviews. 2016; 55:942-956. https://doi.org/10.1016/j.rser.2015.11.029.

111. Yu Z., Leng X., Zhao S., Ji J., Zhou T., Khan A., Kakde A., Liu P., Li X. A Review on the Applications of Microbial Electrolysis Cells in Anaerobic Digestion // Bioresource Technology. 2018; 255:340-348. https://doi.org/10.1016/j.biortech.2018.02.003.

112. Zakaria B. S., Dhar B. R. Progress towards Catalyzing Electro-Methanogenesis in Anaerobic Digestion Process: Fundamentals, Process Optimization, Design and Scale-up Considerations // Bioresource Technology. 2019; 289:121738. https://doi.org/10.1016/j.biortech.2019.121738.

113. Park J. -G., Lee B., Park H. -R., Jun H. -B. Long-Term Evaluation of Methane Production in a Bio-Electrochemical Anaerobic Digestion Reactor According to the Organic Loading Rate // Bioresource Technology. 2019; 273:478-486. https://doi.org/10.1016/j.biortech.2018.11.021.

114. Litti Yu. V., Kovalev D. A., Kovalev A. A., Russkova Yu. I., Nozhevnikova A. N. Study of the process of processing municipal organic waste in an anaerobic bioreactor with electrophysical influence on the methanogenic microbial community // Actual Biotechnology. 2019; (3):450-455. (In Russ.). https://doi.org/10.20914/2304-4691-2019-3-450-455.

115. Guo Z., Liu W., Yang C., Gao L., Thangavel S., Wang L., He Z., Cai W., Wang A. Computational and Experimental Analysis of Organic Degradation Positively Regulated by Bioelectrochemistry in an Anaerobic Bioreactor System // Water Research. 2017; 125:170-179. https://doi.org/10.1016/j.watres.2017.08.039.

116. Guo X., Liu J., Xiao B. Bioelectrochemical Enhancement of Hydrogen and Methane Production from the Anaerobic Digestion of Sewage Sludge in Single-Chamber Membrane-Free Microbial Electrolysis Cells // International Journal of Hydrogen Energy. 2013; 38(3):1342-1347. https://doi.org/10.1016/j.ijhydene.2012.11.087.

117. Gajaraj S., Huang Y., Zheng P., Hu Z. Methane Production Improvement and Associated Methanogenic Assemblages in Bioelectrochemically Assisted Anaerobic Digestion // Biochemical Engineering Journal. 2017; 117:105-112. https://doi.org/10.1016/j.bej.2016.11.003.

118. Mostafa A., Im S., Lee M. -K., Song Y. -C., Kim D. -H. Enhanced Anaerobic Digestion of Phenol via Electrical Energy Input // Chemical Engineering Journal. 2020; 389:124501. https://doi.org/10.1016/j.cej.2020.124501.

119. Fu Q., Kobayashi H., Kuramochi Y., Xu J., Wakayama T., Maeda H., Sato K. Bioelectrochemical Analyses of a Thermophilic Biocathode Catalyzing Sustainable Hydrogen Production // International Journal of Hydrogen Energy. 2013; 38(35):15638-15645. https://doi.org/10.1016/j.ijhydene.2013.04.116.

120. Ding A., Yang Y., Sun G., Wu D. Impact of Applied Voltage on Methane Generation and Microbial Activities in an Anaerobic Microbial Electrolysis Cell (MEC) // Chemical Engineering Journal. 2016; 283:260-265. https://doi.org/10.1016/j.cej.2015.07.054.

121. Sun M., Zhang Z., Lv M., Liu G., Feng Y. Enhancing Anaerobic Digestion Performance of Synthetic Brewery Wastewater with Direct Voltage // Bioresource Technology. 2020; 315:123764. https://doi.org/10.1016/j.biortech.2020.123764.

122. Liwen L., Xu S., Jin Y., Han R., Liu H., Lü F. Evaluation of Methanogenic Microbial Electrolysis Cells (MECs) under Closed/Open Circuit Operations // Environmental Technology. 2017; 39:1-27. https://doi.org/10.1080/09593330.2017.1310934.

123. Feng Y., Zhang Y., Chen S., Quan X. Enhanced Production of Methane from Waste Activated Sludge by the Combination of High-Solid Anaerobic Digestion and Microbial Electrolysis Cell with Iron–Graphite Electrode // Chemical Engineering Journal. 2015; 259:787-794. https://doi.org/10.1016/j.cej.2014.08.048.

124. Cai W., Liu W., Yang C., Wang L., Liang B., Sangeetha T., Guo Z., Wang A. Biocathodic Methanogenic Community in an Integrated Anaerobic Digestion and Microbial Electrolysis System for Enhancement of Methane Production from Waste Sludge // ACS Sustainable Chemistry & Engineering. 2016; 4. https://doi.org/10.1021/acssuschemeng.6b01221.

125. Park J. -G., Lee B., Shi P., Kim Y., Jun H. -B. Effects of Electrode Distance and Mixing Velocity on Current Density and Methane Production in an Anaerobic Digester Equipped with a Microbial Methanogenesis Cell // International Journal of Hydrogen Energy. 2017; 42(45):27732-27740. https://doi.org/10.1016/j.ijhydene.2017.07.025.

126. Chen Y., Yu B., Yin C., Zhang C., Dai X., Yuan H., Zhu N. Biostimulation by Direct Voltage to Enhance Anaerobic Digestion of Waste Activated Sludge // RSC Adv. 2016; 6(2):1581-1588. https://doi.org/10.1039/C5RA24134K.

127. Feng Q., Song Y. -C., Ahn Y. Electroactive Microorganisms in Bulk Solution Contribute Significantly to Methane Production in Bioelectrochemical Anaerobic Reactor // Bioresource Technology. 2018; 259:119- 127. https://doi.org/10.1016/j.biortech.2018.03.039.

128. Choi O., Sang B. -I. Extracellular Electron Transfer from Cathode to Microbes: Application for Biofuel Production // Biotechnology for Biofuels. 2016; 9(1):11. https://doi.org/10.1186/s13068-016-0426-0.

129. Blasco-Gómez R., Batlle-Vilanova P., Villano M., Balaguer M. D., Colprim J., Puig S. On the Edge of Research and Technological Application: A Critical Review of Electromethanogenesis // International Journal of Molecular Sciences. 2017. https://doi.org/10.3390/ijms18040874.

130. Huang J., Feng H., Huang L., Ying X., Shen D., Chen T., Shen X., Zhou Y., Xu Y. Continuous Hydrogen Production from Food Waste by Anaerobic Digestion (AD) Coupled Single-Chamber Microbial Electrolysis Cell (MEC) under Negative Pressure // Waste Management. 2020; 103:61-66. https://doi.org/10.1016/j.wasman.2019.12.015.

131. Cai Y., Zheng Z., Wang X. Obstacles Faced by Methanogenic Archaea Originating from Substrate-Driven Toxicants in Anaerobic Digestion // Journal of Hazardous Materials. 2021; 403:123938. https://doi.org/10.1016/j.jhazmat.2020.123938.

132. Panchenko V. A., Kovalev A. A., Litti Yu. V. Field testing of solar modules of various designs intended for power supply of the biogas plant // Alternative Energy and Ecology (ISJAEE). 2025; (1):53-77. (In Russ.). https://doi.org/10.15518/isjaee.2025.01.053-077

133. Rahman M. M., Hasan M. M., Paatero J. V., Lahdelma R. Hybrid Application of Biogas and Solar Resources to Fulfill Household Energy Needs: A Potentially Viable Option in Rural Areas of Developing Countries // Renewable Energy. 2014; 68:35-45. https://doi.org/10.1016/j.renene.2014.01.030.

134. Ali M. Y., Hassan M., Rahman M. A., Kafy A. -A., Ara I., Javed A., Rahman M. R. Life Cycle Energy and Cost Analysis of Small Scale Biogas Plant and Solar PV System in Rural Areas of Bangladesh // Energy Procedia. 2019; 160:277-284. https://doi.org/10.1016/j.egypro.2019.02.147.

135. Rahman M. M., Hasan M. M., Paatero J. V., Lahdelma R. Hybrid Application of Biogas and Solar Resources to Fulfill Household Energy Needs: A Potentially Viable Option in Rural Areas of Developing Countries // Renewable Energy. 2014; 68:35-45. https://doi.org/10.1016/j.renene.2014.01.030.

136. Tamoor M., Tahir M. S., Sagir M., Tahir M. B., Iqbal S., Nawaz T. Design of 3 KW Integrated Power Generation System from Solar and Biogas // International Journal of Hydrogen Energy. 2020; 45(23):12711-12720. https://doi.org/10.1016/j.ijhydene.2020.02.207.

137. Gazda W., Stanek W. Energy and Environmental Assessment of Integrated Biogas Trigeneration and Photovoltaic Plant as More Sustainable Industrial System // Applied Energy 2016; 169:138-149. https://doi.org/10.1016/j.apenergy.2016.02.037.

138. Axaopoulos P., Panagakis P., Tsavdaris A., Georgakakis D. Simulation and Experimental Performance of a Solar-Heated Anaerobic Digester // Solar Energy. 2001; 70(2):155-164. https://doi.org/10.1016/S0038-092X(00)00130-4.

139. El-Mashad H. M., Van Loon W. K. P., Zeeman G., Bot G. P. A., Lettinga G. Design of A Solar Thermophilic Anaerobic Reactor for Small Farms // Biosystems Engineering. 2004; 87(3):345-353. https://doi.org/10.1016/j.biosystemseng.2003.11.013.

140. Ouhammou B., Mohammed A., Sliman S., Jamil A., Mohammed B., Karouach F., El Bari H., Kousksou T. Experimental Conception and Thermo-Energetic Analysis of a Solar Biogas Production System // Case Studies in Thermal Engineering. 2022; 30:101740. https://doi.org/10.1016/j.csite.2021.101740.

141. Darwesh M. R., Ghoname M. S. Experimental Studies on the Contribution of Solar Energy as a Source for Heating Biogas Digestion Units // Energy Reports. 2021; 7:1657-1671. https://doi.org/10.1016/j.egyr.2021.03.014.

142. Ouhammou B., Naciri M., Aggour M., Bakraoui M., Karouach F., Bari H. El. Design and Analysis of Integrating the Solar Thermal Energy in Anaerobic Digester Using TRNSYS: Application Kenitra-Morocco // Energy Procedia. 2017; 141:13-17. https://doi.org/10.1016/j.egypro.2017.11.004.

143. Feng R., Li J., Dong T., Li X. Performance of a Novel Household Solar Heating Thermostatic Biogas System // Applied Thermal Engineering. 2016; 96:519-526. https://doi.org/10.1016/j.applthermaleng.2015.12.003.

144. Feng R., Li J., Dong T., Li X. Performance of a Novel Household Solar Heating Thermostatic Biogas System // Applied Thermal Engineering. 2016; 96:519-526. https://doi.org/10.1016/j.applthermaleng.2015.12.003.

145. Li J., Jin S., Wan D., Li H., Gong S., Novakovic V. Feasibility of Annual Dry Anaerobic Digestion Temperature-Controlled by Solar Energy in Cold and Arid Areas // Journal of Environmental Management. 2022; 318:115626. https://doi.org/10.1016/j.jen-vman.2022.115626.

146. Zhong Y., Bustamante Roman M., Zhong Y., Archer S., Chen R., Deitz L., Hochhalter D., Balaze K., Sperry M., Werner E., Kirk D., Liao W. Using Anaerobic Digestion of Organic Wastes to Biochemically Store Solar Thermal Energy // Energy. 2015; 83:638-646. https://doi.org/10.1016/j.energy.2015.02.070.

147. Gaballah E. S., Abdelkader T. K., Luo S., Yuan Q., El-Fatah Abomohra A. Enhancement of Biogas Production by Integrated Solar Heating System: A Pilot Study Using Tubular Digester // Energy. 2020; 193:116758. https://doi.org/10.1016/j.energy.2019.116758.

148. Rathod V. P., Shete J., Bhale P. V. Experimental Investigation on Biogas Reforming to Hydrogen Rich Syngas Production Using Solar Energy // International Journal of Hydrogen Energy. 2016; 41(1):132-138. https://doi.org/10.1016/j.ijhydene.2015.09.158.

149. Su B., Han W., Jin H. Proposal and Assessment of a Novel Integrated CCHP System with Biogas Steam Reforming Using Solar Energy // Applied Energy. 2017; 206:1-11. https://doi.org/10.1016/j.apenergy.2017.08.028.

150. Su B., Han W., Zhang X., Chen Y., Wang Z., Jin H. Assessment of a Combined Cooling, Heating and Power System by Synthetic Use of Biogas and Solar Energy // Applied Energy. 2018; 229:922-935. https://doi.org/10.1016/j.apenergy.2018.08.037.

151. Mehr A. S., Gandiglio M., Mosayeb Nezhad M., Lanzini A., Mahmoudi S. M. S., Yari M., Santarelli M. Solar-Assisted Integrated Biogas Solid Oxide Fuel Cell (SOFC) Installation in Wastewater Treatment Plant: Energy and Economic Analysis // Applied Energy. 2017; 191:620-638. https://doi.org/10.1016/j.apenergy.2017.01.070.

152. Zhang G., Li Y.; Dai Y. J., Wang R. Z. Design and Analysis of a Biogas Production System Utilizing Residual Energy for a Hybrid CSP and Biogas Power Plant // Applied Thermal Engineering. 2016; 109:423-431. https://doi.org/10.1016/j.applthermaleng.2016.08.092.

153. Lai C. -Y., Zhou L., Yuan Z., Guo J. Hydrogen-Driven Microbial Biogas Upgrading: Advances, Challenges and Solutions // Water Research. 2021; 197:117120. https://doi.org/10.1016/j.watres.2021.117120.

154. Angelidaki I., Treu L., Tsapekos P., Luo G., Campanaro S., Wenzel H., Kougias P. G. Biogas Upgrading and Utilization: Current Status and Perspectives // Biotechnology Advances. 2018; 36(2):452-466. https://doi.org/10.1016/j.biotechadv.2018.01.011.

155. Curto D., Martín M. Renewable Based Biogas Upgrading // Journal of Cleaner Production. 2019; 224:50-59. https://doi.org/10.1016/j.jclepro.2019.03.176.

156. Fu S., Angelidaki I., Zhang Y. Biogas Upgrading by CO2-to-CH4 Bioconversion // Trends in Biotechnology. 2021; 39(4):336-347. https://doi.org/10.1016/j.tibtech.2020.08.006.

157. Onwuemezie L., Gohari Darabkhani H. Solar and Wind Assisted Biohydrogen Production from Integrated Anaerobic Digestion and Microbial Electrolysis Cell Coupled with Catalytic Reforming // Energy Conversion and Management. 2024; 305:118224. https://doi.org/10.1016/j.enconman.2024.118224.;

158. Onwuemezie L., Gohari Darabkhani H. Biohydrogen Production from Solar and Wind Assisted AF-MEC Coupled with MFC, PEM Electrolysis of H2O and H2 Fuel Cell for Small-Scale Applications // Renewable Energy. 2024; 224:120160. https://doi.org/10.1016/j.renene.2024.120160.

159. Hitaj C., Suttles S. Globe Due to the Work of AgEcon Search. Trends in U. S. Agriculture’s Consumption and Production of Energy: Renewable Power, Shale Energy and Cellulosic Biomass Claudia Hitaj and Shellye Suttles.

160. Kacprzak A. and Ferri M. Promoting bioeconomy through agriculture practice in Eastern Europe and Central Asia. Budapest, FAO, 2025. https://doi.org/10.4060/cd3868en

161. Promoting sustainable and circular bioeconomy through agriculture practice in Eastern Europe and Central Asia, FAO, 2023. https://openknowledge.fao.org/server/api/core/bitstreams/acfb8791-fd54-4f71-93ca-229dcd220a97/content

162. GACSA. GACSA 2030 AND BEYOND GACSA Strategic Plan 2022-2032. 2022, 2-19.

163. Kovalev А. А., Kovalev D. А., Panchenko V. A., Zhuravleva Е. А., Laikova А. А., Shekhurdina S. V., Vivekanand V., Litti Yu. V. Approbation of an Innovative Method of Pretreatment of Dark Fermentation Feedstocks // International Journal of Hydrogen Energy. 2022; 47(78):33272-33281. https://doi.org/10.1016/j.ijhydene.2022.08.051.

164. Gandhi P., Kumar S., Paritosh K., Pareek N., Vivekanand V. Hotel Generated Food Waste and Its Biogas Potential: A Case Study of Jaipur City, India // Waste and Biomass Valorization. 2019; 10(6):1459-1468. https://doi.org/10.1007/s12649-017-0153-1.

165. Paritosh K., Mathur S., Pareek N., Vivekanand V. Feasibility Study of Waste (d) Potential: Co-Digestion of Organic Wastes, Synergistic Effect and Kinetics of Biogas Production // International Journal of Environmental Science and Technology. 2018; 15(5):1009-1018. https://doi.org/10.1007/s13762-017-1453-5.

166. Kovalev D. A., Izmailov A. Y., Dorokhov A. S., Makarov A. G., Safonov A. V., Litti Yu. V., Kovalev A. A. Two-Stage Anaerobic Digestion of Organic Agricultural Waste: Efficiency Evaluation of Using Carbon Cloth as a Carrier Material for Anaerobic Biofilters during the Start-Up // International Journal of Hydrogen Energy. 2025; 120:13-23. https://doi.org/10.1016/j.ijhydene.2025.03.256.

167. Kovalev A. A., Kovalev D. A., Panchenko V. A. Using Solar Energy to Power a Microbial Electrolysis Cell. Bulletin of MPEI. 2024; 3:42-49. (In Russ.). https://doi.org/10.24160/1993-6982-2024-3-42-49

168. Sun H., Bi W. -T., He Q., Zhu L., Dong Y. -Q., Li F., Guo Z. -G., Ding J., He J. -B. Overcoming the Conventional Thermodynamic Limit of Water Electrolysis to Boost Renewable Energy Storage // Chemical Engineering Journal. 2025; 508:161107. https://doi.org/10.1016/j.cej.2025.161107.

169. Wang Q., Sun C., Cui D., Bai J., Wu C., Wu S., Zhang J. Feasibility Analysis of Oil Shale Catalyzed Water Electrolysis for Hydrogen Production // Renewable Energy. 2025; 251:123448. https://doi.org/10.1016/j.renene.2025.123448.

170. Pape S. -V., Zerressen S., Seidler M. F., Keller R., Lohmann-Richters F., Müller M., Apfel U. -P., Mechler A. K., Glüsen A. Performance Data Extraction from Dynamic Long-Term Operation of Proton Exchange Membrane and Alkaline Water Electrolysis Cells // International Journal of Hydrogen Energy. 2025; 127:51-63. https://doi.org/10.1016/j.ijhydene.2025.03.387.

171. Kovalev A. A., Mikheeva E. R., Katraeva I. V., Kovalev D. A., Kozlov A. M.; Litti Yu. V. Bioenergy Recovery from Two-Stage Mesophilic-Thermophilic Anaerobic Digestion of Cheese Whey // International Journal of Hydrogen Energy. 2023; 48(12):4676-4685. https://doi.org/10.1016/j.ijhydene.2022.11.003.

172. Kovalev A. A., Kovalev D. A., Panchenko V. A., Vivekanand V., Pareek N., Masakapalli Sh. K., Zhuravleva E. A., Laikova A. A., Shekhurdina S. V., Ivanenko A. A., Litti Yu. V. The effect of different feeding rates of substrate pretreated in a vortex layer apparatus on dark fermentative biohydrogen production // Alternative Energy and Ecology (ISJAEE). 2025; (3):83-102. (In Russ.). https://doi.org/10.15518/isjaee.2025.03.083-102.

173. Chen J. L., Ortiz R., Steele T. W. J., Stuckey D. C. Toxicants Inhibiting Anaerobic Digestion: A Review // Biotechnology Advances. 2014; 32(8):1523-1534. https://doi.org/10.1016/j.biotechadv.2014.10.005.

174. Srivastava R. K., Sarangi P. K., Singh A. K., Shadangi K. P., Sahoo U. K., Vivekanand V., Pugazhendhi A., Subudhi S., Sharma M., Gupta V. K. Unearthing the Potential of Organic Biowastes via Microbial Fermentation for Production of CH4 and H2 / Biohythane // Biomass and Bioenergy. 2024; 190:107427. https://doi.org/10.1016/j.biombioe.2024.107427.

175. Sivanesan J., Vijayalakshmi A., Sivaprakash B., Rajamohan N. Biohythane as a Sustainable Fuel – A Review on Prospective Synthesis Based on Feedstock Preprocessing, Optimization Approach and Circular Economy Concept // Process Safety and Environmental Protection. 2024; 185:739-753. https://doi.org/10.1016/j.psep.2024.03.062.

176. Cho S. -K., Trchounian K., Reungsang A., Kumar V., Igliński B., Piechota G., Kumar G. Critical Factors Influencing Biohythane Production from Research to Commercialization // Energy. 2025; 328:136284. https://doi.org/10.1016/j.energy.2025.136284.

177. Luo S., Jain A., Aguilera A., He Z. Effective Control of Biohythane Composition through Operational Strategies in an Innovative Microbial Electrolysis Cell // Applied Energy. 2017; 206:879-886. https://doi.org/10.1016/j.apenergy.2017.08.241.

178. Chu C. -Y., Vo T. -P., Chen T. -H. A Novel of Biohythane Gaseous Fuel Production from Pineapple Peel Waste Juice in Two-Stage of Continuously Stirred Anaerobic Bioreactors // Fuel. 2020; 279:118526. https://doi.org/10.1016/j.fuel.2020.118526.

179. Li X., Liu G., He Z. Flexible Control of Biohythane Composition and Production by Dual Cathodes in a Bioelectrochemical System // Bioresource Technology. 2020; 295:122270. https://doi.org/10.1016/j.biortech.2019.122270.


Review

For citations:


Kovalev A.A., Kovalev D.A., Panchenko V.A., Vivekanand V., Zhuravleva E.A., Litti Yu.V. Bioelectrochemical system for green energy production in a circular bioeconomy: conversion of solar energy and organic waste into hydrogen carrier gases. Alternative Energy and Ecology (ISJAEE). 2025;(5):91-124. (In Russ.) https://doi.org/10.15518/isjaee.2025.05.091-124

Views: 17


ISSN 1608-8298 (Print)